Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2000, Volume 12, Issue 4, Pages 3–24
DOI: https://doi.org/10.4213/dm353
(Mi dm353)
 

This article is cited in 5 scientific papers (total in 5 papers)

The parameters of recursive MDS-codes

S. González, E. Couselo, V. Markov, A. Nechaev
References:
Abstract: A full $m$-recursive code of length $n>m$ over an alphabet of $q\geq 2$ elements is the set of all segments of length $n$ of the recurring sequences that satisfy some fixed recursivity law $f(x_1,\dots,x_m)$. We investigate the conditions under which there exist such codes with distance $n-m+1$ (recursive MDS-codes). Let $\nu^r(m,q)$ be the maximum of the numbers $n$ for which a full $m$-recursive code exists. In our previous paper, it was noted that the condition $\nu^r(m,q)\geq n$ means that there exists an $m$-quasigroup $f$, which together with its $n-m-1$ sequential recursive derivatives forms an orthogonal system of $m$-quasigroups (of Latin squares for $m=2$). It was proved that $\nu^r(m,q)\geq 4$ for all values $q\in\mathbf N$ except possibly six of them. Here we strengthen this estimate for a series of values $q<100$ and give some lower bounds for $\nu^r(m,q)$ for $m>2$. In particular, we prove that $\nu^r(m, q) \ge q+1$ for all primary $q$ and $m=1,\dots,q$ and $\nu^r(2^t-1,2^t)=2^t+2$ for $t = 2,3,4$. Moreover, we prove that there exists a linear recursive $[6,3,4]$-MDS-code over the group $Z_2\oplus Z_2$, but there is no such code over the field $F_4$.
Received: 26.06.2000
Bibliographic databases:
UDC: 519.7
Language: Russian
Citation: S. González, E. Couselo, V. Markov, A. Nechaev, “The parameters of recursive MDS-codes”, Diskr. Mat., 12:4 (2000), 3–24; Discrete Math. Appl., 10:5 (2000), 433–453
Citation in format AMSBIB
\Bibitem{GonCouMar00}
\by S.~Gonz\'alez, E.~Couselo, V.~Markov, A.~Nechaev
\paper The parameters of recursive MDS-codes
\jour Diskr. Mat.
\yr 2000
\vol 12
\issue 4
\pages 3--24
\mathnet{http://mi.mathnet.ru/dm353}
\crossref{https://doi.org/10.4213/dm353}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1826175}
\zmath{https://zbmath.org/?q=an:1020.94020}
\transl
\jour Discrete Math. Appl.
\yr 2000
\vol 10
\issue 5
\pages 433--453
Linking options:
  • https://www.mathnet.ru/eng/dm353
  • https://doi.org/10.4213/dm353
  • https://www.mathnet.ru/eng/dm/v12/i4/p3
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025