|
This article is cited in 2 scientific papers (total in 2 papers)
On critical $\Omega$-fibered formations of finite groups
M. M. Sorokina, M. A. Korpacheva
Abstract:
Let
$\mathfrak H$ be a class of finite groups.
An $\Omega$-foliated formation of finite groups
$\mathfrak F$ with direction
$\varphi$ is called a minimal $\Omega$-foliated non-$\mathfrak H$-formation
$\varphi$, or
a ${\mathfrak H}_{\Omega \varphi}$-critical formation if
$\mathfrak F \nsubseteq \mathfrak H$, but all proper
$\Omega$-foliated subformations with direction $\varphi$ in
$\mathfrak F$ are contained in the class
$\mathfrak H$. In this paper we give a complete description of the structure
of minimal $\Omega$-foliated non-$\mathfrak H$-formations with
$br$-direction
$\varphi$ satisfying the condition
$\varphi\leq\varphi_{3}$.
Received: 17.05.2004
Citation:
M. M. Sorokina, M. A. Korpacheva, “On critical $\Omega$-fibered formations of finite groups”, Diskr. Mat., 18:1 (2006), 106–115; Discrete Math. Appl., 16:3 (2006), 289–298
Linking options:
https://www.mathnet.ru/eng/dm35https://doi.org/10.4213/dm35 https://www.mathnet.ru/eng/dm/v18/i1/p106
|
|