Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2000, Volume 12, Issue 3, Pages 76–94
DOI: https://doi.org/10.4213/dm344
(Mi dm344)
 

Enumeration of the faces of complexes and normalizations of distributive lattices

A. O. Matveev
References:
Abstract: For an arbitrary face system $\Phi\subseteq 2^{[m]}$ of the power set of the set $[m]=\{1,\dots,m\}$, we consider the vector descriptions $f(\Phi;m),h(\Phi;m)\in Q^{m+1}$ and the generating functions
$$ F_{\Phi;m}(y-1)=\sum_{l=0}^mf_l(\Phi;m)(y-1)^{m-l} = H_{\Phi;m}(y)=\sum_{l=0}^mh_{l}(\Phi;m)y^{m-l}, $$
where $f_l(\Phi;m)=|\{A\in\Phi\colon |A|=l\}|$, $0\leq l\leq m$. The corresponding valuations on the Boolean lattice of all subsets of the power set $2^{[m]}$ are defined.
For a partition of a face system $\Phi\subseteq{2}^{[m]}$ into Boolean intervals such that the partition consists of $p_{i,j}$ intervals $[A,B]$ with $|A|=j$ and $|B-A|=i$,
$$ h_l(\Phi;m)=(-1)^l\sum_{i=0}^{m-l}\sum_{j=0}^l (-1)^j p_{i,j} \binom{m-i-j}{l-j}. $$

For a pair of mutually dual face systems $\Phi,\Phi^*\subseteq2^{[m]}$, where $\Phi^*=\{[m]-A\colon A\in{2}^{[m]}, A\notin\Phi\}$,
$$ h_l(\Phi;m)+(-1)^l\sum_{j=l}^m \binom jlh_j(\Phi^*;m)=0, \qquad 1\leq l\leq m. $$
Received: 10.01.1999
Bibliographic databases:
UDC: 519.1
Language: Russian
Citation: A. O. Matveev, “Enumeration of the faces of complexes and normalizations of distributive lattices”, Diskr. Mat., 12:3 (2000), 76–94; Discrete Math. Appl., 10:4 (2000), 403–421
Citation in format AMSBIB
\Bibitem{Mat00}
\by A.~O.~Matveev
\paper Enumeration of the faces of complexes and normalizations of distributive lattices
\jour Diskr. Mat.
\yr 2000
\vol 12
\issue 3
\pages 76--94
\mathnet{http://mi.mathnet.ru/dm344}
\crossref{https://doi.org/10.4213/dm344}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1810956}
\zmath{https://zbmath.org/?q=an:0965.05008}
\transl
\jour Discrete Math. Appl.
\yr 2000
\vol 10
\issue 4
\pages 403--421
Linking options:
  • https://www.mathnet.ru/eng/dm344
  • https://doi.org/10.4213/dm344
  • https://www.mathnet.ru/eng/dm/v12/i3/p76
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:376
    Full-text PDF :217
    References:39
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024