Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2000, Volume 12, Issue 2, Pages 85–92
DOI: https://doi.org/10.4213/dm334
(Mi dm334)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the complexity of the disjunctive normal form of threshold functions

O. V. Shabanin
Full-text PDF (620 kB) Citations (2)
References:
Abstract: We consider the problem on estimating the complexity of the disjunctive normal form (d.n.f.) of threshold functions in $n$ variables, where the complexity is the minimal number of simple implicants in the representation of the d.n.f. It is known that the complexity of the d.n.f. of almost all threshold functions is no less than $n^2/\log_2 n$. We prove inequalities, which connect the complexity $L \nu(f)$ of the d.n.f. of a threshold function $f$ with the Chow parameters. By using these inequalities we show that for almost all threshold functions, for sufficiently large $n$,
$$ \log_2 L\nu(f)>n-2\sqrt{2n\log_2 n}(1+\delta(n)), $$
where $\delta(n)$ is an arbitrary function such that $\delta(n)\to 0$ and $n\delta(n)\to \infty$ as $n\to\infty$.
Received: 17.05.1999
Bibliographic databases:
UDC: 519.7
Language: Russian
Citation: O. V. Shabanin, “On the complexity of the disjunctive normal form of threshold functions”, Diskr. Mat., 12:2 (2000), 85–92; Discrete Math. Appl., 10:2 (2000), 175–182
Citation in format AMSBIB
\Bibitem{Sha00}
\by O.~V.~Shabanin
\paper On the complexity of the disjunctive normal form of threshold functions
\jour Diskr. Mat.
\yr 2000
\vol 12
\issue 2
\pages 85--92
\mathnet{http://mi.mathnet.ru/dm334}
\crossref{https://doi.org/10.4213/dm334}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1783076}
\zmath{https://zbmath.org/?q=an:0983.94063}
\transl
\jour Discrete Math. Appl.
\yr 2000
\vol 10
\issue 2
\pages 175--182
Linking options:
  • https://www.mathnet.ru/eng/dm334
  • https://doi.org/10.4213/dm334
  • https://www.mathnet.ru/eng/dm/v12/i2/p85
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:1063
    Full-text PDF :370
    References:53
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024