Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2000, Volume 12, Issue 2, Pages 31–50
DOI: https://doi.org/10.4213/dm326
(Mi dm326)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the time of attaining a maximum by a critical branching process in a random environment and by a stopped random walk

V. I. Afanasyev
References:
Abstract: Let $\{\xi_n\}$ be a critical branching process in a random environment with linear-fractional generating functions, $T$ be the time of extinction of $\{\xi_n\}$, $T_M$ be the first maximum passage time of $\{\xi_n\}$. We study the asymptotic behaviour of $\mathsf P(T_M>n)$ and prove limit theorems for the random variables $\{T_M/n\mid T>n\}$ and $\{T_M/T\mid T>n\}$ as $n\to\infty$. Similar results are established for the stopped random walk with zero drift.
Received: 23.12.1998
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: V. I. Afanasyev, “On the time of attaining a maximum by a critical branching process in a random environment and by a stopped random walk”, Diskr. Mat., 12:2 (2000), 31–50; Discrete Math. Appl., 10:3 (2000), 243–264
Citation in format AMSBIB
\Bibitem{Afa00}
\by V.~I.~Afanasyev
\paper On the time of attaining a maximum by a critical branching process in a random environment and by a stopped random walk
\jour Diskr. Mat.
\yr 2000
\vol 12
\issue 2
\pages 31--50
\mathnet{http://mi.mathnet.ru/dm326}
\crossref{https://doi.org/10.4213/dm326}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1783073}
\zmath{https://zbmath.org/?q=an:0969.60087}
\transl
\jour Discrete Math. Appl.
\yr 2000
\vol 10
\issue 3
\pages 243--264
Linking options:
  • https://www.mathnet.ru/eng/dm326
  • https://doi.org/10.4213/dm326
  • https://www.mathnet.ru/eng/dm/v12/i2/p31
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025