Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2001, Volume 13, Issue 4, Pages 3–42
DOI: https://doi.org/10.4213/dm307
(Mi dm307)
 

This article is cited in 16 scientific papers (total in 16 papers)

A canonical system of generators of a unitary polynomial ideal over a commutative Artinian chain ring

A. A. Nechaev, D. A. Mikhailov
References:
Abstract: Let $R$ be a commutative Artinian chain ring. An ideal $I$ of the ring $\mathcal R _ k=R[x_1,\ldots,x_k]$ is called monic if the quotient ring $\mathcal R_k \setminus I$ is a finitely generated $R$-module. For such ideal a standard basis, called the Canonical Generating System (CGS), is constructed. This basis inherits some good properties of CGS of an ideal of $R[x]$ and the Gröbner basis of a polynomial ideal over a field. In particular, using CGS, it is possible to present an algorithm, which is simpler than the exhaustive search algorithm, for constructing cosets of $\mathcal R_k$ modulo $I$. The CGS allows us to check whether the quotient ring $\mathcal R_k\setminus I$ is a free $R$-module. Moreover, if $R$ is a finite ring there is a formula for calculation of $|\mathcal R_k\setminus I|$ that depends only on numerical parameters of CGS. Applying CGS, we create a generating system of a family of $k$-linear recurring sequences with characteristic ideal $I$ and a criterion of existence of a $k$-linear shift register with this characteristic ideal.
This research was supported by the Russian Foundation for Basic Research, grants 99–01–00941 and 99–01–00382.
Received: 11.10.2001
Bibliographic databases:
UDC: 512.62
Language: Russian
Citation: A. A. Nechaev, D. A. Mikhailov, “A canonical system of generators of a unitary polynomial ideal over a commutative Artinian chain ring”, Diskr. Mat., 13:4 (2001), 3–42; Discrete Math. Appl., 11:6 (2001), 545–586
Citation in format AMSBIB
\Bibitem{NecMik01}
\by A.~A.~Nechaev, D.~A.~Mikhailov
\paper A canonical system of generators of a unitary polynomial ideal over a commutative Artinian chain ring
\jour Diskr. Mat.
\yr 2001
\vol 13
\issue 4
\pages 3--42
\mathnet{http://mi.mathnet.ru/dm307}
\crossref{https://doi.org/10.4213/dm307}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1901760}
\zmath{https://zbmath.org/?q=an:1066.13502}
\transl
\jour Discrete Math. Appl.
\yr 2001
\vol 11
\issue 6
\pages 545--586
Linking options:
  • https://www.mathnet.ru/eng/dm307
  • https://doi.org/10.4213/dm307
  • https://www.mathnet.ru/eng/dm/v13/i4/p3
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:845
    Full-text PDF :354
    References:85
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024