Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2001, Volume 13, Issue 3, Pages 57–74
DOI: https://doi.org/10.4213/dm298
(Mi dm298)
 

On the sorting complexity of Cartesian products of partially ordered sets

Yu. B. Nikitin
References:
Abstract: We study the complexity $L(M_n)$ of algorithms for sorting the partially ordered set $M_n$, which is isomorphic to the Cartesian product
$$ K_1\times\ldots\times K_n, $$
where all $K_i$ are taken from some finite family, have a unique maximum element, and are prime with respect to the Cartesian product. For the set $\{M_n\}$, as $n\to\infty$, we obtain the estimates
\begin{align*} L(M_n)&\gtrsim|M_n|\log_{2}|M_n|, \\ L(M_n)&\lesssim(|K_1|+\ldots+|K_n|)|M_n|. \end{align*}
Besides, we prove that for a partially ordered set with one maximum element the Cartesian decomposition into prime factors is unique up to a permutation of the factors.
Received: 18.12.2000
Bibliographic databases:
UDC: 519.7
Language: Russian
Citation: Yu. B. Nikitin, “On the sorting complexity of Cartesian products of partially ordered sets”, Diskr. Mat., 13:3 (2001), 57–74; Discrete Math. Appl., 11:4 (2001), 373–390
Citation in format AMSBIB
\Bibitem{Nik01}
\by Yu.~B.~Nikitin
\paper On the sorting complexity of Cartesian products of partially ordered sets
\jour Diskr. Mat.
\yr 2001
\vol 13
\issue 3
\pages 57--74
\mathnet{http://mi.mathnet.ru/dm298}
\crossref{https://doi.org/10.4213/dm298}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1874905}
\zmath{https://zbmath.org/?q=an:1088.68838}
\transl
\jour Discrete Math. Appl.
\yr 2001
\vol 11
\issue 4
\pages 373--390
Linking options:
  • https://www.mathnet.ru/eng/dm298
  • https://doi.org/10.4213/dm298
  • https://www.mathnet.ru/eng/dm/v13/i3/p57
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:445
    Full-text PDF :256
    References:47
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024