Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2001, Volume 13, Issue 3, Pages 81–90
DOI: https://doi.org/10.4213/dm296
(Mi dm296)
 

This article is cited in 6 scientific papers (total in 6 papers)

The Poisson limit theorem for the number of noncollinear solutions of a system of random equations of a special form

V. G. Mikhailov
Full-text PDF (795 kB) Citations (6)
References:
Abstract: We investigate the properties of the number $\nu$ of non-collinear non-zero solutions of a random system of equations of the following form. The left-hand sides of these equations are some functions of linear expressions of the form
$$ l_s=a_{s,1}x_1\oplus\ldots\oplus a_{s,n}x_n $$
with random coefficients and unknowns $x_1,\ldots,x_n$. The right-hand sides are equal to zero. The system is considered over the field $\mathit{GF}(q)$. We assume that the coefficients in $l_s$ are independent and have the uniform distribution. In this paper, we obtain inequalities for the factorial moments of the random variable $\nu$ and give sufficient conditions of validity of the Poisson limit theorem for $\nu$.
The research was supported by the Russian Foundation for Basic Research, grant 99–01–00012, and by the Foundation of the President of the Russian Federation for Support of Scientific Schools, grant 00–15–96136.
Received: 14.02.2001
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: V. G. Mikhailov, “The Poisson limit theorem for the number of noncollinear solutions of a system of random equations of a special form”, Diskr. Mat., 13:3 (2001), 81–90; Discrete Math. Appl., 11:4 (2001), 391–400
Citation in format AMSBIB
\Bibitem{Mik01}
\by V.~G.~Mikhailov
\paper The Poisson limit theorem for the number of noncollinear solutions of a system of random equations of a special form
\jour Diskr. Mat.
\yr 2001
\vol 13
\issue 3
\pages 81--90
\mathnet{http://mi.mathnet.ru/dm296}
\crossref{https://doi.org/10.4213/dm296}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1874907}
\zmath{https://zbmath.org/?q=an:1047.60016}
\transl
\jour Discrete Math. Appl.
\yr 2001
\vol 11
\issue 4
\pages 391--400
Linking options:
  • https://www.mathnet.ru/eng/dm296
  • https://doi.org/10.4213/dm296
  • https://www.mathnet.ru/eng/dm/v13/i3/p81
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:1054
    Full-text PDF :306
    References:112
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024