Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2006, Volume 18, Issue 1, Pages 9–29
DOI: https://doi.org/10.4213/dm29
(Mi dm29)
 

This article is cited in 13 scientific papers (total in 13 papers)

Approximation of Boolean functions by monomial functions

A. S. Kuz'min, V. T. Markov, A. A. Nechaev, A. B. Shishkov
References:
Abstract: Every Boolean function of $n$ variables is identified with a function $F\colon Q\to P$, where $Q=\mathit{GF}(2^n)$, $P=\mathit{GF}(2)$. A. Youssef and G. Gong showed that for $n=2\lambda$ there exist functions $F$ which have equally bad approximations not only by linear functions (that is, by functions $\operatorname{tr}(\mu x)$, where $\mu\in Q^*$ and $\operatorname{tr}\colon Q\to P$ is the trace function), but also by proper monomial functions (functions $\operatorname{tr}(\mu x^\delta)$, where $(\delta, 2^n-1)=1$). Such functions $F$ were called hyper-bent functions (HB functions, HBF), and for any $n=2\lambda$ a non-empty class of HBF having the property $F(0)=0$ was constructed. This class consists of the functions $F(x)=G(x^{2^\lambda-1})$ such that the equation $F(x)=1$ has exactly $(2^\lambda-1)2^{\lambda-1}$ solutions in $Q$. In the present paper, we give some essential restrictions on the parameters of an arbitrary HBF showing that the class of HBF is far less than that of bent functions. In particular, we show that any HBF is a bent function having the degree of nonlinearity $\lambda$, and for some $n$ (for instance, if $\lambda>2$ and $2^\lambda-1$ is prime, or $\lambda\in \{4,9,25,27\}$) the class of HBF is exhausted by the functions $F(x)=G(x^{2^\lambda-1})$ described by A. Youssef and G. Gong. For $n=4$, in addition to 10 HBF listed above there exist 18 more HBF with property $F(0)=0$. The question of whether there exist other hyper-bent functions for $n>4$ remains open.
This research was supported by the Russian Foundation for Basic Research, grants 05–01–01048, 05–01–01018, and the program of the President of the Russian Federation for support of the leading scientific schools, grants 1910.2003.1, 2358.2003.9.
Received: 25.01.2006
English version:
Discrete Mathematics and Applications, 2006, Volume 16, Issue 1, Pages 7–28
DOI: https://doi.org/10.1515/156939206776241255
Bibliographic databases:
UDC: 519.7
Language: Russian
Citation: A. S. Kuz'min, V. T. Markov, A. A. Nechaev, A. B. Shishkov, “Approximation of Boolean functions by monomial functions”, Diskr. Mat., 18:1 (2006), 9–29; Discrete Math. Appl., 16:1 (2006), 7–28
Citation in format AMSBIB
\Bibitem{KuzMarNec06}
\by A.~S.~Kuz'min, V.~T.~Markov, A.~A.~Nechaev, A.~B.~Shishkov
\paper Approximation of Boolean functions by monomial functions
\jour Diskr. Mat.
\yr 2006
\vol 18
\issue 1
\pages 9--29
\mathnet{http://mi.mathnet.ru/dm29}
\crossref{https://doi.org/10.4213/dm29}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2254732}
\zmath{https://zbmath.org/?q=an:1103.94035}
\elib{https://elibrary.ru/item.asp?id=9188329}
\transl
\jour Discrete Math. Appl.
\yr 2006
\vol 16
\issue 1
\pages 7--28
\crossref{https://doi.org/10.1515/156939206776241255}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33744818521}
Linking options:
  • https://www.mathnet.ru/eng/dm29
  • https://doi.org/10.4213/dm29
  • https://www.mathnet.ru/eng/dm/v18/i1/p9
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025