Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2001, Volume 13, Issue 2, Pages 111–119
DOI: https://doi.org/10.4213/dm286
(Mi dm286)
 

On some properties of polynomials over finite fields

S. N. Selezneva
References:
Abstract: We consider polynomials over a finite field. The polynomials of one variables are called transformations. We investigate the polynomials of several variables which do not change under replacement of each variables by some transformation. Such polynomials are called invariant with respect to transformations of variables. We investigate the form of the polynomials invariant with respect to connected transformations. A transformation is called connected if for any two elements $a_1$ and $a_2$ of the field there exist integers $m_1$ and $m_2$ such that the $m_1$-fold iteration of the transformation of $a_1$ coincides with the $m_2$-fold iteration of the transformation of $a_2$.
We consider some integer-valued characteristics of polynomials of several variables, namely, the rank and the weight. We prove the following necessary property of polynomials invariant with respect to connected transformations: if the integers $r$ and $w$ are, respectively, the rank and the weight of a polynomial invariant with respect to connected transformations, then $w^q\ge2^r$, where $q$ is a constant depending on transformations and does not exceed the number of elements of the field.
Received: 05.06.1999
Bibliographic databases:
UDC: 519.7
Language: Russian
Citation: S. N. Selezneva, “On some properties of polynomials over finite fields”, Diskr. Mat., 13:2 (2001), 111–119; Discrete Math. Appl., 11:2 (2001), 189–197
Citation in format AMSBIB
\Bibitem{Sel01}
\by S.~N.~Selezneva
\paper On some properties of polynomials over finite fields
\jour Diskr. Mat.
\yr 2001
\vol 13
\issue 2
\pages 111--119
\mathnet{http://mi.mathnet.ru/dm286}
\crossref{https://doi.org/10.4213/dm286}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1857729}
\zmath{https://zbmath.org/?q=an:1054.11062}
\transl
\jour Discrete Math. Appl.
\yr 2001
\vol 11
\issue 2
\pages 189--197
Linking options:
  • https://www.mathnet.ru/eng/dm286
  • https://doi.org/10.4213/dm286
  • https://www.mathnet.ru/eng/dm/v13/i2/p111
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:536
    Full-text PDF :273
    References:56
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024