|
This article is cited in 2 scientific papers (total in 2 papers)
The asymptotic number of maps on compact orientable surfaces
M. A. Krikun, V. A. Malyshev
Abstract:
We get an asymptotic formula for the sum
$$
Z_{N}=\sum_{b+p=N}F_{b,p}y^p,
$$
where
$$
F_{b,p}=\sum_{\rho=0}^\infty F_{b,p}(\rho),
$$
and $F_{b,p}(\rho)$ is the number of
maps of genus $\rho$ with $p+1$ vertices and $p+b$ edges.
Received: 07.03.2001
Citation:
M. A. Krikun, V. A. Malyshev, “The asymptotic number of maps on compact orientable surfaces”, Diskr. Mat., 13:2 (2001), 89–98; Discrete Math. Appl., 11:2 (2001), 145–154
Linking options:
https://www.mathnet.ru/eng/dm285https://doi.org/10.4213/dm285 https://www.mathnet.ru/eng/dm/v13/i2/p89
|
Statistics & downloads: |
Abstract page: | 366 | Full-text PDF : | 190 | References: | 52 | First page: | 3 |
|