Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2001, Volume 13, Issue 2, Pages 89–98
DOI: https://doi.org/10.4213/dm285
(Mi dm285)
 

This article is cited in 2 scientific papers (total in 2 papers)

The asymptotic number of maps on compact orientable surfaces

M. A. Krikun, V. A. Malyshev
Full-text PDF (844 kB) Citations (2)
References:
Abstract: We get an asymptotic formula for the sum
$$ Z_{N}=\sum_{b+p=N}F_{b,p}y^p, $$
where
$$ F_{b,p}=\sum_{\rho=0}^\infty F_{b,p}(\rho), $$
and $F_{b,p}(\rho)$ is the number of maps of genus $\rho$ with $p+1$ vertices and $p+b$ edges.
Received: 07.03.2001
Bibliographic databases:
UDC: 519.1
Language: Russian
Citation: M. A. Krikun, V. A. Malyshev, “The asymptotic number of maps on compact orientable surfaces”, Diskr. Mat., 13:2 (2001), 89–98; Discrete Math. Appl., 11:2 (2001), 145–154
Citation in format AMSBIB
\Bibitem{KriMal01}
\by M.~A.~Krikun, V.~A.~Malyshev
\paper The asymptotic number of maps on compact orientable surfaces
\jour Diskr. Mat.
\yr 2001
\vol 13
\issue 2
\pages 89--98
\mathnet{http://mi.mathnet.ru/dm285}
\crossref{https://doi.org/10.4213/dm285}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1857727}
\zmath{https://zbmath.org/?q=an:1048.05045}
\transl
\jour Discrete Math. Appl.
\yr 2001
\vol 11
\issue 2
\pages 145--154
Linking options:
  • https://www.mathnet.ru/eng/dm285
  • https://doi.org/10.4213/dm285
  • https://www.mathnet.ru/eng/dm/v13/i2/p89
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:366
    Full-text PDF :190
    References:52
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024