Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2006, Volume 18, Issue 1, Pages 3–8
DOI: https://doi.org/10.4213/dm28
(Mi dm28)
 

This article is cited in 1 scientific paper (total in 1 paper)

Asymptotics of the survival probability of a bounded from below Markov critical branching process with continuous time and infinite variance

B. A. Sevast'yanov
Full-text PDF (297 kB) Citations (1)
References:
Abstract: Let $\mu(t)$ be the number of particles at time $t$ of a continuous-time critical branching process. It is known that the probability of non-extinction of the process at time $t$
$$ Q(t)=\boldsymbol{\mathsf P}\{\mu(t)>0\mid \mu(0)=1\}\to 0 $$
as $t\to\infty$. Hence it follows that
$$ Q_{m0}=\boldsymbol{\mathsf P}\{\mu(t)>0\mid \mu(0)=m\}\sim m Q(t)\to 0 $$
for any $m=2,3,\dotsc$ Let for any integer $m>r\geq1$
$$ Q_{mr}(t)=\boldsymbol{\mathsf P}\{\inf_{0\leq u\leq t}\mu(u)>r\mid\mu(0)=m\}. $$
In this paper, we prove that
$$ Q_{mr}(t)\sim (m-r)Q(t) $$
as $t\to\infty$ for any critical continuous-time Markov branching process. Earlier, this result was obtained for branching processes with finite variation of the number of particles.
This research was supported by the Russian Foundation for Basic Research, grant 05.01.00035, and by the program of the President of Russian Federation for support of leading scientific schools, grant 1758.2003.1.
Received: 10.11.2005
English version:
Discrete Mathematics and Applications, 2006, Volume 16, Issue 1, Pages 1–5
DOI: https://doi.org/10.1515/156939206776241246
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: B. A. Sevast'yanov, “Asymptotics of the survival probability of a bounded from below Markov critical branching process with continuous time and infinite variance”, Diskr. Mat., 18:1 (2006), 3–8; Discrete Math. Appl., 16:1 (2006), 1–5
Citation in format AMSBIB
\Bibitem{Sev06}
\by B.~A.~Sevast'yanov
\paper Asymptotics of the survival probability of a bounded from below Markov critical branching process with continuous time and infinite variance
\jour Diskr. Mat.
\yr 2006
\vol 18
\issue 1
\pages 3--8
\mathnet{http://mi.mathnet.ru/dm28}
\crossref{https://doi.org/10.4213/dm28}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2254731}
\zmath{https://zbmath.org/?q=an:1104.60050}
\elib{https://elibrary.ru/item.asp?id=9188328}
\transl
\jour Discrete Math. Appl.
\yr 2006
\vol 16
\issue 1
\pages 1--5
\crossref{https://doi.org/10.1515/156939206776241246}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33744794379}
Linking options:
  • https://www.mathnet.ru/eng/dm28
  • https://doi.org/10.4213/dm28
  • https://www.mathnet.ru/eng/dm/v18/i1/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:620
    Full-text PDF :256
    References:95
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024