Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2001, Volume 13, Issue 1, Pages 119–131
DOI: https://doi.org/10.4213/dm277
(Mi dm277)
 

This article is cited in 1 scientific paper (total in 1 paper)

Compositional formations of cc-length 3

V. A. Vedernikov, D. G. Koptyukh
References:
Abstract: Let ΘΘ be a full modular lattice of the formation of finite groups and let 0Θ0Θ be zero of ΘΘ. We say that a ΘΘ-formation F0Θ has the Θ-length lΘ(F) equal to n if there exist Θ-formations
F0,F1,,Fn
such that Fn=F, F0=0Θ, and Fi1 is a maximal Θ-subformation of Fi, i=1,,n. In this paper, a complete description of the structure of composite formations of the c-length 3 is obtained.
Received: 03.07.1998
Revised: 14.03.2000
Bibliographic databases:
UDC: 512.542
Language: Russian
Citation: V. A. Vedernikov, D. G. Koptyukh, “Compositional formations of c-length 3”, Diskr. Mat., 13:1 (2001), 119–131; Discrete Math. Appl., 11:2 (2001), 199–211
Citation in format AMSBIB
\Bibitem{VedKop01}
\by V.~A.~Vedernikov, D.~G.~Koptyukh
\paper Compositional formations of $c$-length~3
\jour Diskr. Mat.
\yr 2001
\vol 13
\issue 1
\pages 119--131
\mathnet{http://mi.mathnet.ru/dm277}
\crossref{https://doi.org/10.4213/dm277}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1846043}
\zmath{https://zbmath.org/?q=an:1062.20019}
\transl
\jour Discrete Math. Appl.
\yr 2001
\vol 11
\issue 2
\pages 199--211
Linking options:
  • https://www.mathnet.ru/eng/dm277
  • https://doi.org/10.4213/dm277
  • https://www.mathnet.ru/eng/dm/v13/i1/p119
  • This publication is cited in the following 1 articles:
    1. E. N. Demina, “The lattices of $n$-multiply $\Omega_1$-foliated $\tau$-closed formations of multioperator $T$-groups”, Discrete Math. Appl., 22:2 (2012), 147–172  mathnet  crossref  crossref  mathscinet  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:434
    Full-text PDF :250
    References:78
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025