|
This article is cited in 1 scientific paper (total in 1 paper)
Compositional formations of $c$-length 3
V. A. Vedernikov, D. G. Koptyukh
Abstract:
Let $\Theta$ be a full modular lattice of the formation of finite groups
and let $0_\Theta$ be zero of $\Theta$. We say that a $\Theta$-formation
$\mathfrak F\ne 0_\Theta$ has the $\Theta$-length $l_\Theta(\mathfrak F)$ equal to
$n$ if there exist $\Theta$-formations
$$
\mathfrak F_0,\mathfrak F_1, \ldots,\mathfrak F_n
$$
such that $\mathfrak F_n=\mathfrak F$, $\mathfrak F_0=0_\Theta$, and
$\mathfrak F_{i-1}$ is a maximal $\Theta$-subformation of
$\mathfrak F_i$, $i=1,\ldots,n$. In this paper, a complete description
of the structure of composite formations of the $c$-length 3 is obtained.
Received: 03.07.1998 Revised: 14.03.2000
Citation:
V. A. Vedernikov, D. G. Koptyukh, “Compositional formations of $c$-length 3”, Diskr. Mat., 13:1 (2001), 119–131; Discrete Math. Appl., 11:2 (2001), 199–211
Linking options:
https://www.mathnet.ru/eng/dm277https://doi.org/10.4213/dm277 https://www.mathnet.ru/eng/dm/v13/i1/p119
|
Statistics & downloads: |
Abstract page: | 403 | Full-text PDF : | 241 | References: | 68 | First page: | 1 |
|