Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2002, Volume 14, Issue 2, Pages 119–133
DOI: https://doi.org/10.4213/dm246
(Mi dm246)
 

Dichotomous graphs whose girth is one less than the maximum

A. V. Knyazev
References:
Abstract: We say that a digraph is 2-regular (dichotomous) if the out-degrees $d_0(j)$ and in-degrees $d_1(j)$ of any its vertex $j\in V$ satisfy the equality $d_0(j)=d_1(j)=2$. A graph $\Gamma$ is said to be primitive if for any pair $i$ and $j$ of its vertices in $\Gamma$ there exists a path from $i$ to $j$ of length $m>0$. The least $m$ is denoted $\gamma(\Gamma)$ and called the exponent of $\Gamma$. Let $G(n,2,p)$ stand for the class of strongly connected 2-regular graphs with $n$ vertices of girth (the length of the shortest circuit) $p$, and let $P(n,2,p)$ denote the class of primitive 2-regular graphs of girth $p$ with $n$ vertices. The girth of a 2-regular graph with $n$ vertices does not exceed $]n/2[$, where $]x[$ is the least integer no smaller than $x$. Earlier, the author proved that any primitive 2-regular graph with $n$ vertices and with the maximal possible girth $]n/2[$ had the exponent equal exactly to $n-1$.
In this paper we prove that for odd $n\ge 13$
$$ G(n,2,(n-1)/2)=P(n,2,(n-1)/2), $$
any graph in $G(n,2,(n-1)/2)$ has a circuit of length $(n+1)/2$, and for any $\Gamma\in G(n,2,(n-1)/2)$ the inequality
$$ \gamma(\Gamma)\le \frac{(n-1)^2}4+5 $$
is true.
Received: 18.03.2002
Bibliographic databases:
UDC: 519.15
Language: Russian
Citation: A. V. Knyazev, “Dichotomous graphs whose girth is one less than the maximum”, Diskr. Mat., 14:2 (2002), 119–133; Discrete Math. Appl., 12:3 (2002), 303–318
Citation in format AMSBIB
\Bibitem{Kny02}
\by A.~V.~Knyazev
\paper Dichotomous graphs whose girth is one less than the maximum
\jour Diskr. Mat.
\yr 2002
\vol 14
\issue 2
\pages 119--133
\mathnet{http://mi.mathnet.ru/dm246}
\crossref{https://doi.org/10.4213/dm246}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1937013}
\zmath{https://zbmath.org/?q=an:1048.05041}
\transl
\jour Discrete Math. Appl.
\yr 2002
\vol 12
\issue 3
\pages 303--318
Linking options:
  • https://www.mathnet.ru/eng/dm246
  • https://doi.org/10.4213/dm246
  • https://www.mathnet.ru/eng/dm/v14/i2/p119
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024