Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2007, Volume 19, Issue 2, Pages 94–100
DOI: https://doi.org/10.4213/dm24
(Mi dm24)
 

On representation of $k$-valued logic functions by a sum of products of subfunctions

V. I. Panteleev, N. A. Peryazev
References:
Abstract: The set of variables of a $k$-valued logic function $f(x_1,\dots,x_n)$ is partitioned into $t$ parts, $t>1$, and a polynomial representation of the function $f$ is considered where the terms are products of all possible subfunctions corresponding to the partitioning. We analyse conditions under which an arbitrary function admits a representation in such a polynomial form.
Received: 30.01.2006
English version:
Discrete Mathematics and Applications, 2007, Volume 17, Issue 3, Pages 279–285
DOI: https://doi.org/10.1515/dma.2007.024
Bibliographic databases:
UDC: 519.7
Language: Russian
Citation: V. I. Panteleev, N. A. Peryazev, “On representation of $k$-valued logic functions by a sum of products of subfunctions”, Diskr. Mat., 19:2 (2007), 94–100; Discrete Math. Appl., 17:3 (2007), 279–285
Citation in format AMSBIB
\Bibitem{PanPer07}
\by V.~I.~Panteleev, N.~A.~Peryazev
\paper On representation of $k$-valued logic functions by a~sum of products of subfunctions
\jour Diskr. Mat.
\yr 2007
\vol 19
\issue 2
\pages 94--100
\mathnet{http://mi.mathnet.ru/dm24}
\crossref{https://doi.org/10.4213/dm24}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2357163}
\zmath{https://zbmath.org/?q=an:05233545}
\elib{https://elibrary.ru/item.asp?id=9577332}
\transl
\jour Discrete Math. Appl.
\yr 2007
\vol 17
\issue 3
\pages 279--285
\crossref{https://doi.org/10.1515/dma.2007.024}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34547702256}
Linking options:
  • https://www.mathnet.ru/eng/dm24
  • https://doi.org/10.4213/dm24
  • https://www.mathnet.ru/eng/dm/v19/i2/p94
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:473
    Full-text PDF :272
    References:55
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024