Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2002, Volume 14, Issue 1, Pages 75–81
DOI: https://doi.org/10.4213/dm235
(Mi dm235)
 

On the asymptotics of the probabilities of large deviations for a negative polynomial distribution

A. N. Timashev
References:
Abstract: We consider the polynomial scheme of trials with outcomes $E_0,E_1,\dots,E_N$ and the corresponding probabilities $p_0,p_1,\dots,p_N$. We assume that the trials are performed until the $r$th occurrence of the outcome $E_0$, $r=1,2,\dotsc$ If $\eta_j(r)$ is the number of occurrences of the outcome $E_j$ at the stopping time, $j=1,\dots,N$, and $\eta(r)=(\eta_1(r),\dots,\eta_N(r))$, then the vector $\eta(r)$ has the negative polynomial distribution. Under the assumptions that $N\in\mathbf N$ and the positive probabilities $p_0,p_1,\dots,p_N$ are fixed, that $r\to\infty$ and $k_1,\dots,k_N\to\infty$ so that the parameters $\beta_j=k_j/r$ satisfy the inequalities $\beta_j\ge\varepsilon$, where $\varepsilon$ is a positive constant, $j=1,\dots,N$, and under some additional constraints, we give asymptotic estimates of the probabilities of large deviations
$$ \mathsf P\{\eta_j(r)\le k_j,\ j=1,\dots,N\}, \qquad \mathsf P\{\eta_j(r)\ge k_j,\ j=1,\dots, N\}. $$
In order to derive these asymptotic estimates, we use the multidimensional saddle-point method in the form suggested by Good.
Received: 25.05.2000
Bibliographic databases:
UDC: 519.2
Language: Russian
Citation: A. N. Timashev, “On the asymptotics of the probabilities of large deviations for a negative polynomial distribution”, Diskr. Mat., 14:1 (2002), 75–81; Discrete Math. Appl., 12:1 (2002), 61–68
Citation in format AMSBIB
\Bibitem{Tim02}
\by A.~N.~Timashev
\paper On the asymptotics of the probabilities of large deviations for a negative polynomial distribution
\jour Diskr. Mat.
\yr 2002
\vol 14
\issue 1
\pages 75--81
\mathnet{http://mi.mathnet.ru/dm235}
\crossref{https://doi.org/10.4213/dm235}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1919857}
\zmath{https://zbmath.org/?q=an:1046.60027}
\transl
\jour Discrete Math. Appl.
\yr 2002
\vol 12
\issue 1
\pages 61--68
Linking options:
  • https://www.mathnet.ru/eng/dm235
  • https://doi.org/10.4213/dm235
  • https://www.mathnet.ru/eng/dm/v14/i1/p75
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:392
    Full-text PDF :198
    References:37
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024