Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2002, Volume 14, Issue 1, Pages 114–141
DOI: https://doi.org/10.4213/dm226
(Mi dm226)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the functional complexity of a two-dimensional interval search problem

È. È. Gasanov, I. V. Kuznetsova
References:
Abstract: We suggest a modification of the Bentley–Maurer algorithm which solves a two-dimensional interval search problem. This modification allows us to decrease the initially logarithmic average search time to constant, retaining the logarithmic worst-case search time. This algorithm depends on a parameter whose change results in variation of the needed memory from $\mathcal O(k^3)$ to $\mathcal O(k\log k)$; the average search time (without the time needed to output the answer) varies from $\mathcal O(1)$ to $\mathcal O(\log k)$. In particular, for any $\varepsilon>0$ and available memory $\mathcal O(k^{1+\varepsilon})$ the average search time is $\mathcal O(1)$. On the basis of these results, we give upper bounds for the functional complexity of a two-dimensional interval search problem.
This research was supported by the Russian Foundation for Basic Research, grants 98–01–00130, 01–01–00748.
Received: 18.01.2001
Bibliographic databases:
UDC: 519.7
Language: Russian
Citation: È. È. Gasanov, I. V. Kuznetsova, “On the functional complexity of a two-dimensional interval search problem”, Diskr. Mat., 14:1 (2002), 114–141; Discrete Math. Appl., 12:1 (2002), 69–95
Citation in format AMSBIB
\Bibitem{GasKuz02}
\by \`E.~\`E.~Gasanov, I.~V.~Kuznetsova
\paper On the functional complexity of a two-dimensional interval search problem
\jour Diskr. Mat.
\yr 2002
\vol 14
\issue 1
\pages 114--141
\mathnet{http://mi.mathnet.ru/dm226}
\crossref{https://doi.org/10.4213/dm226}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1919860}
\zmath{https://zbmath.org/?q=an:1134.90417}
\transl
\jour Discrete Math. Appl.
\yr 2002
\vol 12
\issue 1
\pages 69--95
Linking options:
  • https://www.mathnet.ru/eng/dm226
  • https://doi.org/10.4213/dm226
  • https://www.mathnet.ru/eng/dm/v14/i1/p114
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:538
    Full-text PDF :234
    References:58
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024