Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2003, Volume 15, Issue 3, Pages 117–127
DOI: https://doi.org/10.4213/dm210
(Mi dm210)
 

This article is cited in 3 scientific papers (total in 3 papers)

On asymptotic expansions for the distribution of the number of cycles in a random permutation

A. N. Timashev
Full-text PDF (772 kB) Citations (3)
References:
Abstract: We obtain explicit formulas for the coefficients of asymptotic expansions in the domain of large deviations for the distributions of the number of cycles $\nu_n$ in a random permutation of degree $n$, that is, for the probability $\mathsf P\{\nu_n=N\}$ under the condition that $n,N\to\infty$ in such a way that $1<\alpha_0\le\alpha=n/N\le\alpha_1<\infty$, where $\alpha_0$, $\alpha_1$ are constants. These formulas express the coefficients in terms of cumulants of the random variable which has the distribution of the logarithmic series with specially chosen parameter. For the cumulants of the third and fourth orders we give the corresponding values. We discuss the accuracy of the obtained approximations. If $n,N\to\infty$ so that $0<\gamma_0\le\gamma=N/\ln n\le\gamma_1<\infty$, where $\gamma_0$, $\gamma_1$ are constants, we give asymptotic estimates of the probabilities $\mathsf P\{\nu_n=N\}$, $\mathsf P\{\nu_n\le N\}$, $\mathsf P\{\nu_n\ge N\}$ with the remainder terms of order $O((\ln n)^{-2})$ uniform in $\gamma\in[\gamma_0, \gamma_1]$. The corresponding estimate for the probability $\mathsf P\{\nu_n=N\}$ refines the previously known results for the case $N=\beta\ln n+o(\ln n)$, where $\beta$ is a positive constant.
Received: 23.01.2003
English version:
Discrete Mathematics and Applications, 2003, Volume 13, Issue 5, Pages 417–427
DOI: https://doi.org/10.1515/156939203322556072
Bibliographic databases:
UDC: 519.2
Language: Russian
Citation: A. N. Timashev, “On asymptotic expansions for the distribution of the number of cycles in a random permutation”, Diskr. Mat., 15:3 (2003), 117–127; Discrete Math. Appl., 13:5 (2003), 417–427
Citation in format AMSBIB
\Bibitem{Tim03}
\by A.~N.~Timashev
\paper On asymptotic expansions for the distribution of the number of cycles in a random permutation
\jour Diskr. Mat.
\yr 2003
\vol 15
\issue 3
\pages 117--127
\mathnet{http://mi.mathnet.ru/dm210}
\crossref{https://doi.org/10.4213/dm210}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2021209}
\zmath{https://zbmath.org/?q=an:1048.05009}
\transl
\jour Discrete Math. Appl.
\yr 2003
\vol 13
\issue 5
\pages 417--427
\crossref{https://doi.org/10.1515/156939203322556072}
Linking options:
  • https://www.mathnet.ru/eng/dm210
  • https://doi.org/10.4213/dm210
  • https://www.mathnet.ru/eng/dm/v15/i3/p117
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:551
    Full-text PDF :242
    References:79
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024