Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2007, Volume 19, Issue 1, Pages 6–10
DOI: https://doi.org/10.4213/dm2
(Mi dm2)
 

This article is cited in 1 scientific paper (total in 1 paper)

A class of subcritical branching processes with immigration and infinite number of types of particles

B. A. Sevast'yanov
Full-text PDF (88 kB) Citations (1)
References:
Abstract: We consider a subcritical branching process with immigration, infinite number of types $T_1,T_2,\ldots$ of particles, and discrete time. The state of the process at the moment of time $t$ is the set of vectors
$$ \vec{\xi}(r,t)=(\xi_1(t),\xi_2(t),\dots,\xi_r(t)), \qquad r\ge1, $$
where $\xi_i(t)$ is the number of particles of type $T_i$ at the moment of time $t$, $i=1,2,\ldots$ It is assumed that at each moment of time only particles of type $T_1$ immigrate and each particle of type $T_i$ turns into a set of particles of types $T_i$ and $T_{i+1}$. It is proved that the probability distributions of the vectors $\vec{\xi}(r,t)$ converge as $t\to\infty$ to discrete limit distributions.
Received: 09.12.2006
English version:
Discrete Mathematics and Applications, 2007, Volume 17, Issue 1, Pages 1–5
DOI: https://doi.org/10.1515/DMA.2007.001
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: B. A. Sevast'yanov, “A class of subcritical branching processes with immigration and infinite number of types of particles”, Diskr. Mat., 19:1 (2007), 6–10; Discrete Math. Appl., 17:1 (2007), 1–5
Citation in format AMSBIB
\Bibitem{Sev07}
\by B.~A.~Sevast'yanov
\paper A class of subcritical branching processes with immigration and infinite number of types of particles
\jour Diskr. Mat.
\yr 2007
\vol 19
\issue 1
\pages 6--10
\mathnet{http://mi.mathnet.ru/dm2}
\crossref{https://doi.org/10.4213/dm2}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2325898}
\zmath{https://zbmath.org/?q=an:05233522}
\elib{https://elibrary.ru/item.asp?id=9468381}
\transl
\jour Discrete Math. Appl.
\yr 2007
\vol 17
\issue 1
\pages 1--5
\crossref{https://doi.org/10.1515/DMA.2007.001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34248144861}
Linking options:
  • https://www.mathnet.ru/eng/dm2
  • https://doi.org/10.4213/dm2
  • https://www.mathnet.ru/eng/dm/v19/i1/p6
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:1256
    Full-text PDF :227
    References:92
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024