Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2024, Volume 36, Issue 1, Pages 15–45
DOI: https://doi.org/10.4213/dm1804
(Mi dm1804)
 

On bilinear complexity of multiplcation of a $3\times 2$ matrix by a $2\times 3$ matrix

V. P. Burichenko

Institute of Mathematics of the National Academy of Sciences of Belarus, Minsk
References:
Abstract: It is proved that the bilinear complexity of multiplication of a $3\times 2$ matrix by a $2\times 3$ matrix is equal to $15$, over any commutative ring. In other words, the well-known Hopcroft-Kerr scheme for multiplication of such matrices is optimal, for any domain of scalars.
Keywords: matrix multiplication, complexity.
Received: 09.11.2023
Document Type: Article
UDC: 519.712.4+512.643
Language: Russian
Citation: V. P. Burichenko, “On bilinear complexity of multiplcation of a $3\times 2$ matrix by a $2\times 3$ matrix”, Diskr. Mat., 36:1 (2024), 15–45
Citation in format AMSBIB
\Bibitem{Bur24}
\by V.~P.~Burichenko
\paper On bilinear complexity of multiplcation of a $3\times 2$ matrix by a $2\times 3$ matrix
\jour Diskr. Mat.
\yr 2024
\vol 36
\issue 1
\pages 15--45
\mathnet{http://mi.mathnet.ru/dm1804}
\crossref{https://doi.org/10.4213/dm1804}
Linking options:
  • https://www.mathnet.ru/eng/dm1804
  • https://doi.org/10.4213/dm1804
  • https://www.mathnet.ru/eng/dm/v36/i1/p15
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025