Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2024, Volume 36, Issue 1, Pages 103–115
DOI: https://doi.org/10.4213/dm1792
(Mi dm1792)
 

On satellites of $\sigma_\Omega$-foliated formations of groups

M. M. Sorokina, A. S. Nesterov

I. G. Petrovsky Bryansk State University
References:
Abstract: Only finite groups are considered. A class of groups is called a formation if it is closed under taking homomorphic images and subdirect products. For a non-empty class $\Omega$ of simple groups V.A. Vedernikov defined $\Omega$-foliated formations of finite groups using two types of functions (functions-satellites and functions-directions). Let $\sigma_\Omega$ be an arbitrary partition of the class $\Omega$. The article studies $\sigma_\Omega$-foliated formations constructed by the authors as a natural generalization of the concept of an $\Omega$-foliated formation using A.N. Skiba's $\sigma$-methods. In the paper we proved the existence of different types of satellites of $\sigma_\Omega$-foliated formations and described their structure.
Keywords: finite group, class of groups, formation, $\sigma_\Omega$-foliated formation, satellite of $\sigma_\Omega$-foliated formation, direction of $\sigma_\Omega$-foliated formation.
Received: 27.08.2023
Document Type: Article
UDC: 512.542
Language: Russian
Citation: M. M. Sorokina, A. S. Nesterov, “On satellites of $\sigma_\Omega$-foliated formations of groups”, Diskr. Mat., 36:1 (2024), 103–115
Citation in format AMSBIB
\Bibitem{SorNes24}
\by M.~M.~Sorokina, A.~S.~Nesterov
\paper On satellites of $\sigma_\Omega$-foliated formations of groups
\jour Diskr. Mat.
\yr 2024
\vol 36
\issue 1
\pages 103--115
\mathnet{http://mi.mathnet.ru/dm1792}
\crossref{https://doi.org/10.4213/dm1792}
Linking options:
  • https://www.mathnet.ru/eng/dm1792
  • https://doi.org/10.4213/dm1792
  • https://www.mathnet.ru/eng/dm/v36/i1/p103
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025