Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2004, Volume 16, Issue 4, Pages 88–109
DOI: https://doi.org/10.4213/dm178
(Mi dm178)
 

This article is cited in 2 scientific papers (total in 2 papers)

The shortest vectors of lattices connected with a linear congruent generator

A. S. Rybakov
References:
Abstract: Let $\varepsilon>0$ be a fixed real number, $\mathcal E\subset\mathbf R^s$ be a full rank lattice with determinant $\Delta\in\mathbf Q$. We call this lattice $\varepsilon$-regular if $\lambda_1(\mathcal E)>\Delta^{1/s}(h(\Delta))^{-\varepsilon}$, where $\lambda_1(\mathcal E)$ is the length of the shortest nonzero vector of $\mathcal E$ and $h(\Delta)$ is the maximum of absolute values of the numerator and the denominator of the irreducible rational fraction for $\Delta$. In this paper, we consider two full rank lattices in the space $\mathbf R^s$: the lattice $\mathcal L(a,W)$ connected with the linear congruent sequence
\begin{equation} (x_N),\quad x_{N+1}=ax_N\pmod W,\quad N=1,2,\ldots, \end{equation}
and the lattice $\mathcal L^*(a,W)$ dual to $\mathcal L(a,W)$.
There is a conjecture which states that for any natural number $s$, any real number $0<\varepsilon<\varepsilon_0(s)$, and any natural number $W>W_0(s,\varepsilon)$, the lattices $\mathcal L(a,W)$ and $\mathcal L^*(a,W)$ are $\varepsilon$-regular for all $a=0,1,\ldots,W-1$ excluding some set of numbers $a$ of cardinality at most $W^{1-\varepsilon}$.
In the case $s=3$, A. M. Frieze, J. Hestad, R. Kannan, J. C. Lagarias, and A. Shamir in a paper published in 1988 proved a more weak assertion (in their estimate the number of exceptional values $a$ is at most $W^{1-\varepsilon/2}$). Using the methods of this paper, it is not difficult to prove the conjecture for $s=1$ and $s=2$.
In our paper, we prove the conjecture for $s=4$. With the help of our methods we improve the result of the paper mentioned above and prove the conjecture for $s=3$.
Our result can be applied to the reconstruction of a linear congruent sequence (1) if the high-order bits of its first $s$ elements are given.
Received: 10.11.2003
Revised: 14.09.2004
English version:
Discrete Mathematics and Applications, 2004, Volume 14, Issue 5, Pages 479–500
DOI: https://doi.org/10.1515/1569392042572203
Bibliographic databases:
UDC: 519.7
Language: Russian
Citation: A. S. Rybakov, “The shortest vectors of lattices connected with a linear congruent generator”, Diskr. Mat., 16:4 (2004), 88–109; Discrete Math. Appl., 14:5 (2004), 479–500
Citation in format AMSBIB
\Bibitem{Ryb04}
\by A.~S.~Rybakov
\paper The shortest vectors of lattices connected with a linear congruent generator
\jour Diskr. Mat.
\yr 2004
\vol 16
\issue 4
\pages 88--109
\mathnet{http://mi.mathnet.ru/dm178}
\crossref{https://doi.org/10.4213/dm178}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2141148}
\zmath{https://zbmath.org/?q=an:1111.11033}
\transl
\jour Discrete Math. Appl.
\yr 2004
\vol 14
\issue 5
\pages 479--500
\crossref{https://doi.org/10.1515/1569392042572203}
Linking options:
  • https://www.mathnet.ru/eng/dm178
  • https://doi.org/10.4213/dm178
  • https://www.mathnet.ru/eng/dm/v16/i4/p88
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:454
    Full-text PDF :262
    References:33
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024