Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2023, Volume 35, Issue 2, Pages 109–124
DOI: https://doi.org/10.4213/dm1743
(Mi dm1743)
 

Deciding multiaffinity of polynomials over a finite field

S. N. Selezneva

Lomonosov Moscow State University
References:
Abstract: We consider polynomials $f(x_1, \dots, x_n)$ over a finite filed that satisfy the following condition: the set of solutions of the equation $f(x_1, \dots, x_n) = b$, where $b$ is some element of the field, coincides with the set of solutions of some system of linear equations over this field. Such polynomials are said to be multiaffine with the right-hand side $b$ (or with respect to $b$). We describe a number of properties of multiaffine polynomials. Then on the basis of these properties we propose a polynomial algorithm that takes a polynomial over a finite field and an element of the field as an input and decides whether the polynomial is multiaffine with respect to this element. In case of the positive answer the algorithm also outputs a system of linear equations that corresponds to this polynomial. The complexity of the proposed algorithm is the smallest in comparison with other known algorithms that solve this problem.
Keywords: finite field, polynomial, multiaffinity, system of linear equations over a finite field, algorithm, complexity, polynomial algorithm.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-284
Received: 08.12.2022
English version:
Discrete Mathematics and Applications, 2024, Volume 34, Issue 4, Pages 233–244
DOI: https://doi.org/10.1515/dma-2024-0020
Document Type: Article
UDC: 519.7+519.712.3+512.624.3
Language: Russian
Citation: S. N. Selezneva, “Deciding multiaffinity of polynomials over a finite field”, Diskr. Mat., 35:2 (2023), 109–124; Discrete Math. Appl., 34:4 (2024), 233–244
Citation in format AMSBIB
\Bibitem{Sel23}
\by S.~N.~Selezneva
\paper Deciding multiaffinity of polynomials over a finite field
\jour Diskr. Mat.
\yr 2023
\vol 35
\issue 2
\pages 109--124
\mathnet{http://mi.mathnet.ru/dm1743}
\crossref{https://doi.org/10.4213/dm1743}
\transl
\jour Discrete Math. Appl.
\yr 2024
\vol 34
\issue 4
\pages 233--244
\crossref{https://doi.org/10.1515/dma-2024-0020}
Linking options:
  • https://www.mathnet.ru/eng/dm1743
  • https://doi.org/10.4213/dm1743
  • https://www.mathnet.ru/eng/dm/v35/i2/p109
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:214
    Full-text PDF :26
    References:33
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024