Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2023, Volume 35, Issue 3, Pages 81–99
DOI: https://doi.org/10.4213/dm1738
(Mi dm1738)
 

Invariance principle for numbers of particles in cells of a general allocation scheme

I. Fazekasa, A. N. Chuprunovb

a University of Debrecen
b Chuvash State University
References:
Abstract: Let $\eta_1,\dots\eta_N$ be a generalized allocation scheme of $n$ particles over $N$ cells defined by independent random variables $\xi_1,\dots,\xi_N$ having power series distribution with parameter $\beta$. Denote by $m(\beta)$ and $\sigma^2(\beta)$ an expectation and a variance of $\xi_i$. Let $\beta$ be such that $\frac{n}{N}=m(\beta)$. We consider random processes $X_{n,N}(t)=\sum_{i=1}^{[tN]}\eta_i$ and $Y_{n,N}(t)=n^{-1/2}(X_{n,N}(t)-[tN]\frac{n}{N})$, $0\le t\le 1$. We find conditions under which for $n,N\to\infty$ the random processes $\sigma_{-1}(\beta)\sqrt{\frac{n}{N}}Y_{n,N}$ converge in distribution in the Skhorohod space to a Brounian bridge, and conditions ubder which for fixes $n$ and $N\to\infty$ the random processes $X_{n,N}$ converge in distribution in the Skhorohod space to $nF_n$, where $F_n$ is an empirical process.
Keywords: invariance principle, generalized allocation scheme, Poisson limit theorem, local limit theorem, empirical process, Brownian bridge.
Received: 12.09.2022
Document Type: Article
UDC: 519.212.2+519.214.5
Language: Russian
Citation: I. Fazekas, A. N. Chuprunov, “Invariance principle for numbers of particles in cells of a general allocation scheme”, Diskr. Mat., 35:3 (2023), 81–99
Citation in format AMSBIB
\Bibitem{FazChu23}
\by I.~Fazekas, A.~N.~Chuprunov
\paper Invariance principle for numbers of particles in cells of a general allocation scheme
\jour Diskr. Mat.
\yr 2023
\vol 35
\issue 3
\pages 81--99
\mathnet{http://mi.mathnet.ru/dm1738}
\crossref{https://doi.org/10.4213/dm1738}
Linking options:
  • https://www.mathnet.ru/eng/dm1738
  • https://doi.org/10.4213/dm1738
  • https://www.mathnet.ru/eng/dm/v35/i3/p81
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:134
    Full-text PDF :11
    References:21
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024