Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2022, Volume 34, Issue 3, Pages 20–33
DOI: https://doi.org/10.4213/dm1728
(Mi dm1728)
 

This article is cited in 5 scientific papers (total in 5 papers)

Critical branching processes evolving in a unfavorable random environment

V. A. Vatutin, E. E. Dyakonova

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Full-text PDF (491 kB) Citations (5)
References:
Abstract: Let $\{Z_{n},n=0,1,2,\dots\}$ be a critical branching process in a random environment, and $\{S_{n},n=0,1,2,\dots\}$ be its associated random walk. It is known that if the increments of this random walk belong (without centering) to the domain of attraction of a stable law, then there exists a regularly varying at infinity sequence $a_{1},a_{2},\dots$ such that conditional distributions
\begin{equation*} \mathbf{P}\bigg(\frac{S_{n}}{a_{n}}\leq x\Bigm| Z_{n}>0\bigg),\quad x\in(-\infty,+\infty), \end{equation*}
converge weakly to the distribution of strictly positive proper random variable. In this paper we add to this result the description of the asymptotic behavior of the probability
\begin{equation*} \mathbf{P}(Z_{n}>0, S_{n}\leq \varphi(n)), \end{equation*}
where $\varphi (n)\to \infty$ for $n\to \infty$ in such a way that $\varphi (n)=o(a_{n})$.
Keywords: branching process, unfavorable random environment, non-extinction probability.
Funding agency Grant number
Russian Science Foundation 19-11-00111
Received: 03.06.2022
English version:
Discrete Mathematics and Applications, 2024, Volume 34, Issue 3, Pages 175–186
DOI: https://doi.org/10.1515/dma-2024-0014
Document Type: Article
UDC: 519.218.27
Language: Russian
Citation: V. A. Vatutin, E. E. Dyakonova, “Critical branching processes evolving in a unfavorable random environment”, Diskr. Mat., 34:3 (2022), 20–33; Discrete Math. Appl., 34:3 (2024), 175–186
Citation in format AMSBIB
\Bibitem{VatDya22}
\by V.~A.~Vatutin, E.~E.~Dyakonova
\paper Critical branching processes evolving in a unfavorable random environment
\jour Diskr. Mat.
\yr 2022
\vol 34
\issue 3
\pages 20--33
\mathnet{http://mi.mathnet.ru/dm1728}
\crossref{https://doi.org/10.4213/dm1728}
\transl
\jour Discrete Math. Appl.
\yr 2024
\vol 34
\issue 3
\pages 175--186
\crossref{https://doi.org/10.1515/dma-2024-0014}
Linking options:
  • https://www.mathnet.ru/eng/dm1728
  • https://doi.org/10.4213/dm1728
  • https://www.mathnet.ru/eng/dm/v34/i3/p20
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:287
    Full-text PDF :49
    References:54
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024