Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2022, Volume 34, Issue 4, Pages 14–27
DOI: https://doi.org/10.4213/dm1725
(Mi dm1725)
 

This article is cited in 1 scientific paper (total in 1 paper)

Asymptotic local lower deviations of strictly supercritical branching process in a random environment with geometric distributions of descendants

K. Yu. Denisov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Full-text PDF (493 kB) Citations (1)
References:
Abstract: We consider local probabilities of lower deviations for branching process $Z_{n} = X_{n, 1} + \dotsb + X_{n, Z_{n-1}}$ in random environment $\boldsymbol\eta$. We assume that $\boldsymbol\eta$ is a sequence of independent identically distributed variables and for fixed $\boldsymbol\eta$ the variables $X_{i,j}$ are independent and have geometric distributions. We suppose that steps $\xi_i$ of the associated random walk $S_n = \xi_1 + \dotsb + \xi_n$ has positive mean and satisfies left-side Cramér condition: ${\mathbf E}\exp(h\xi_i) < \infty$ if $h^{-}<h<0$ for some $h^{-} < -1$. Under these assumptions we find the asymptotic of the local probabilities ${\mathbf P}\left( Z_n = \lfloor\exp\left(\theta n\right)\rfloor \right)$, $n\to\infty$, for $\theta \in (\max(m^{-},0);m(-1))$ and for $\theta$ in a neighbourhood of $m(-1)$, where $m^{-}$ and $m(-1)$ are some constants.
Keywords: branching processes, random environments, random walks, Cramér condition, lower deviations, large deviations, local theorems.
Funding agency Grant number
Russian Science Foundation 19-11-00111
Received: 29.05.2022
English version:
Discrete Mathematics and Applications, 2024, Volume 34, Issue 4, Pages 197–206
DOI: https://doi.org/10.1515/dma-2024-0016
Bibliographic databases:
Document Type: Article
UDC: 519.214.8
Language: Russian
Citation: K. Yu. Denisov, “Asymptotic local lower deviations of strictly supercritical branching process in a random environment with geometric distributions of descendants”, Diskr. Mat., 34:4 (2022), 14–27; Discrete Math. Appl., 34:4 (2024), 197–206
Citation in format AMSBIB
\Bibitem{Den22}
\by K.~Yu.~Denisov
\paper Asymptotic local lower deviations of strictly supercritical branching process in a random environment with geometric distributions of descendants
\jour Diskr. Mat.
\yr 2022
\vol 34
\issue 4
\pages 14--27
\mathnet{http://mi.mathnet.ru/dm1725}
\crossref{https://doi.org/10.4213/dm1725}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4406779}
\transl
\jour Discrete Math. Appl.
\yr 2024
\vol 34
\issue 4
\pages 197--206
\crossref{https://doi.org/10.1515/dma-2024-0016}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001295456100005}
Linking options:
  • https://www.mathnet.ru/eng/dm1725
  • https://doi.org/10.4213/dm1725
  • https://www.mathnet.ru/eng/dm/v34/i4/p14
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:173
    Full-text PDF :33
    References:46
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024