Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2024, Volume 36, Issue 3, Pages 29–49
DOI: https://doi.org/10.4213/dm1720
(Mi dm1720)
 

This article is cited in 1 scientific paper (total in 1 paper)

Resistance distance and Kirchhoff index of two kinds of double join operations on graphs

W. Wang, T. Ma

Lanzhou Jiaotong University, China
References:
Abstract: Let GG be a connected graph. The resistance distance between any two vertices of GG is defined to be the network effective resistance between them if each edge of GG is replaced by a unit resistor. The Kirchhoff index of GG is the sum of resistance distances between all pairs of vertices of GG. In this paper, we determine the resistance distance and Kirchhoff index of the subdivision double join GS{G1,G2}GS{G1,G2} and RR-graph double join GR{G1,G2}GR{G1,G2} for a regular graph GG and two arbitrary graphs G1G1, G2G2, respectively.
Keywords: double join graphs, Laplacian matrix, resistance distance, Kirchhoff index.
Funding agency Grant number
National Natural Science Foundation of China 11561042
11961040
Natural Science Foundation of Gansu Province 20JR5RA418
This research was supported by the National Natural Science Foundation of China (Nos. 11561042, 11961040) and the Natural Science Foundation of Gansu Province (No. 20JR5RA418).
Received: 04.04.2022
English version:
Discrete Mathematics and Applications, 2024, Volume 34, Issue 5, Pages 303–316
DOI: https://doi.org/10.1515/dma-2024-0027
Document Type: Article
UDC: 519.177
Language: Russian
Citation: W. Wang, T. Ma, “Resistance distance and Kirchhoff index of two kinds of double join operations on graphs”, Diskr. Mat., 36:3 (2024), 29–49; Discrete Math. Appl., 34:5 (2024), 303–316
Citation in format AMSBIB
\Bibitem{WanMa24}
\by W.~Wang, T.~Ma
\paper Resistance distance and Kirchhoff index of two kinds of double join operations on graphs
\jour Diskr. Mat.
\yr 2024
\vol 36
\issue 3
\pages 29--49
\mathnet{http://mi.mathnet.ru/dm1720}
\crossref{https://doi.org/10.4213/dm1720}
\transl
\jour Discrete Math. Appl.
\yr 2024
\vol 34
\issue 5
\pages 303--316
\crossref{https://doi.org/10.1515/dma-2024-0027}
Linking options:
  • https://www.mathnet.ru/eng/dm1720
  • https://doi.org/10.4213/dm1720
  • https://www.mathnet.ru/eng/dm/v36/i3/p29
  • This publication is cited in the following 1 articles:
    1. Jiaqi Fan, Yuanyuan Li, “Resistance distances in stretched Cantor product networks”, Communications in Nonlinear Science and Numerical Simulation, 141 (2025), 108458  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:169
    References:22
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025