Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2022, Volume 34, Issue 2, Pages 120–136
DOI: https://doi.org/10.4213/dm1703
(Mi dm1703)
 

This article is cited in 2 scientific papers (total in 2 papers)

Limit theorems for the maximal tree size of a Galton – Watson forest in the critical case

E. V. Khvorostyanskaya

Institute of Applied Mathematical Research of the Karelian Research Centre RAS, Petrozavodsk
Full-text PDF (479 kB) Citations (2)
References:
Abstract: We consider a critical Galton – Watson branching process starting with $N$ particles; the number of offsprings is supposed to have the distribution $p_k=(k+1)^{-\tau}-(k+2)^{-\tau}$, $k=0,1,2,\ldots$ Limit distributions of the maximal tree size are obtained for the corresponding Galton – Watson forest with $N$ trees and $n$ non-root vertices as $N,n\to\infty$, $n/N^{\tau}\geq C> 0$.
Keywords: Galton – Watson forest, maximal tree size, limit distribution.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation
The work was carried out with the support of the Federal Budget Fund for the fulfillment of the State Assignment of the KarSC RAS (Institute of Applied Mathematical Research of the KarSC RAS).
Received: 28.02.2022
English version:
Discrete Mathematics and Applications, 2023, Volume 33, Issue 4, Pages 205–217
DOI: https://doi.org/10.1515/dma-2023-0019
Document Type: Article
UDC: 519.179.4
Language: Russian
Citation: E. V. Khvorostyanskaya, “Limit theorems for the maximal tree size of a Galton – Watson forest in the critical case”, Diskr. Mat., 34:2 (2022), 120–136; Discrete Math. Appl., 33:4 (2023), 205–217
Citation in format AMSBIB
\Bibitem{Khv22}
\by E.~V.~Khvorostyanskaya
\paper Limit theorems for the maximal tree size of a Galton\,--\,Watson forest in the critical case
\jour Diskr. Mat.
\yr 2022
\vol 34
\issue 2
\pages 120--136
\mathnet{http://mi.mathnet.ru/dm1703}
\crossref{https://doi.org/10.4213/dm1703}
\transl
\jour Discrete Math. Appl.
\yr 2023
\vol 33
\issue 4
\pages 205--217
\crossref{https://doi.org/10.1515/dma-2023-0019}
Linking options:
  • https://www.mathnet.ru/eng/dm1703
  • https://doi.org/10.4213/dm1703
  • https://www.mathnet.ru/eng/dm/v34/i2/p120
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:287
    Full-text PDF :66
    References:64
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024