Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2022, Volume 34, Issue 1, Pages 76–87
DOI: https://doi.org/10.4213/dm1698
(Mi dm1698)
 

On small distance-regular graphs with the intersection arrays $\{mn-1,(m-1)(n+1)$, $n-m+1;1,1,(m-1)(n+1)\}$

A. A. Makhnev, M. P. Golubyatnikov

N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
References:
Abstract: Let $\Gamma$ be a diameter 3 distance-regular graph with a strongly regular graph $\Gamma_3$, where $\Gamma_3$ is the graph whose vertex set coincides with the vertex set of the graph $\Gamma$ and two vertices are adjacent whenever they are at distance $3$ in the graph $\Gamma$. Computing the parameters of $\Gamma_3$ by the intersection array of the graph $\Gamma$ is considered as the direct problem. Recovering the intersection array of the graph $\Gamma$ by the parameters of $\Gamma_3$ is referred to as the inverse problem. The inverse problem for $\Gamma_3$ has been solved earlier by A. A. Makhnev and M. S. Nirova. In the case where $\Gamma_3$ is a pseudo-geometric graph of a net, a series of admissible intersection arrays has been obtained: $\{c_2(u^2-m^2)+2c_2m-c_2-1,c_2(u^2-m^2),(c_2-1)(u^2-m^2)+2c_2m-c_2;1,c_2,{u^2-m^2}\}$ (A. A. Makhnev, Wenbin Guo, M. P. Golubyatnikov). The cases $c_2=1$ and $c_2=2$ have been examined by A. A. Makhnev, M. P. Golubyatnikov and A. A. Makhnev, M. S. Nirova, respectively. In this paper in the class of graphs with the intersection arrays $\{mn-1,{(m-1)(n+1)}$, ${n-m+1};1,1,(m-1)(n+1)\}$ all admissible intersection arrays for ${3\le m\le 13}$ are found: $\{20,16,5;1,1,16\}$, $\{39,36,4;1,1,36\}$, $\{55,54,2;1,2,54\}$, $\{90,84,7;1,1,84\}$, $\{220,216,5;1,1,216\}$, $\{272,264,9;1,1,264\}$ and $\{350,336,15;1,1,336\}$. It is demonstrated that graphs with the intersection arrays $\{20,16,5;1,1,16\}$, $\{39,36,4;1,1,36\}$ and $\{90,84,7;1,1,84\}$ do not exist.
Keywords: distance-regular graph, graph $\Gamma$ with a strongly regular graph $\Gamma_3$.
Funding agency Grant number
Russian Science Foundation 19-71-10067
he research was supported by the Russian Science Foundation (project № 19-71-10067).
Received: 18.11.2020
English version:
Discrete Mathematics and Applications, 2023, Volume 33, Issue 5, Pages 273–281
DOI: https://doi.org/10.1515/dma-2023-0025
Document Type: Article
UDC: 519.172
Language: Russian
Citation: A. A. Makhnev, M. P. Golubyatnikov, “On small distance-regular graphs with the intersection arrays $\{mn-1,(m-1)(n+1)$, $n-m+1;1,1,(m-1)(n+1)\}$”, Diskr. Mat., 34:1 (2022), 76–87; Discrete Math. Appl., 33:5 (2023), 273–281
Citation in format AMSBIB
\Bibitem{MakGol22}
\by A.~A.~Makhnev, M.~P.~Golubyatnikov
\paper On small distance-regular graphs with the intersection arrays $\{mn-1,(m-1)(n+1)$, $n-m+1;1,1,(m-1)(n+1)\}$
\jour Diskr. Mat.
\yr 2022
\vol 34
\issue 1
\pages 76--87
\mathnet{http://mi.mathnet.ru/dm1698}
\crossref{https://doi.org/10.4213/dm1698}
\transl
\jour Discrete Math. Appl.
\yr 2023
\vol 33
\issue 5
\pages 273--281
\crossref{https://doi.org/10.1515/dma-2023-0025}
Linking options:
  • https://www.mathnet.ru/eng/dm1698
  • https://doi.org/10.4213/dm1698
  • https://www.mathnet.ru/eng/dm/v34/i1/p76
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:285
    Full-text PDF :69
    References:54
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024