Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2021, Volume 33, Issue 4, Pages 132–140
DOI: https://doi.org/10.4213/dm1686
(Mi dm1686)
 

This article is cited in 8 scientific papers (total in 8 papers)

Limit theorem for a smoothed version of the spectral test for testing the equiprobability of a binary sequence

M. P. Savelov

Lomonosov Moscow State University
Full-text PDF (493 kB) Citations (8)
References:
Abstract: We consider the problem of testing the hypothesis that the tested sequence is a sequence of independent random variables that take values $1$ and $-1$ with equal probability. To solve this problem, the Discrete Fourier Transform (spectral) test of the NIST package uses the statistic $T_{Fourier}$, the exact limiting distribution of which is unknown. In this paper a new statistic is proposed and its limiting distribution is established. This new statistic is a slight modification of $T_{Fourier}$. A hypothesis about the limit distribution of $T_{Fourier}$ is formulated, which is confirmed by numerical experiments presented by Pareschi F., Rovatti R. and Setti G.
Keywords: discrete Fourier transform test, spectral test, NIST, TestU01, Rademacher distribution } The author is grateful to A.M. Zubkov for constant attention. {\begin{thebibliography}{9.
Received: 20.05.2021
English version:
Discrete Mathematics and Applications, 2023, Volume 33, Issue 5, Pages 317–323
DOI: https://doi.org/10.1515/dma-2023-0029
Document Type: Article
UDC: 519.214.5+519.233.2
Language: Russian
Citation: M. P. Savelov, “Limit theorem for a smoothed version of the spectral test for testing the equiprobability of a binary sequence”, Diskr. Mat., 33:4 (2021), 132–140; Discrete Math. Appl., 33:5 (2023), 317–323
Citation in format AMSBIB
\Bibitem{Sav21}
\by M.~P.~Savelov
\paper Limit theorem for a smoothed version of the spectral test for testing the equiprobability of a binary sequence
\jour Diskr. Mat.
\yr 2021
\vol 33
\issue 4
\pages 132--140
\mathnet{http://mi.mathnet.ru/dm1686}
\crossref{https://doi.org/10.4213/dm1686}
\transl
\jour Discrete Math. Appl.
\yr 2023
\vol 33
\issue 5
\pages 317--323
\crossref{https://doi.org/10.1515/dma-2023-0029}
Linking options:
  • https://www.mathnet.ru/eng/dm1686
  • https://doi.org/10.4213/dm1686
  • https://www.mathnet.ru/eng/dm/v33/i4/p132
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025