Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2021, Volume 33, Issue 4, Pages 47–60
DOI: https://doi.org/10.4213/dm1678
(Mi dm1678)
 

This article is cited in 1 scientific paper (total in 1 paper)

On implementation of some systems of elementary conjunctions in the class of separating contact circuits

E. G. Krasulina

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Full-text PDF (508 kB) Citations (1)
References:
Abstract: We show that the system of elementary conjunctions $\Omega_{n,2^k} = {K_0,\ldots,K_{2^{k} -1}}$ such that each conjunction depends essentially on $n$ variables and corresponds to some codeword of a linear $(n, k)$-code can be implemented by a separating contact circuit of complexity at most $2^{k+1} + 4k(n - k) - 2$. We also show that if a contact $(1, 2^k)$-terminal network is separating and implements the system of elementary conjunctions $\Omega_{n,2^k}$, then the number of contacts in it is at least $2^{k+1} - 2$.
Keywords: elementary conjunction, contact circuits, separating circuits, complexity of circuits.
Received: 04.10.2021
English version:
Discrete Mathematics and Applications, 2023, Volume 33, Issue 1, Pages 19–29
DOI: https://doi.org/10.1515/dma-2023-0003
Bibliographic databases:
Document Type: Article
UDC: 519.714.7
Language: Russian
Citation: E. G. Krasulina, “On implementation of some systems of elementary conjunctions in the class of separating contact circuits”, Diskr. Mat., 33:4 (2021), 47–60; Discrete Math. Appl., 33:1 (2023), 19–29
Citation in format AMSBIB
\Bibitem{Kra21}
\by E.~G.~Krasulina
\paper On implementation of some systems of elementary conjunctions in the class of separating contact circuits
\jour Diskr. Mat.
\yr 2021
\vol 33
\issue 4
\pages 47--60
\mathnet{http://mi.mathnet.ru/dm1678}
\crossref{https://doi.org/10.4213/dm1678}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4227269}
\transl
\jour Discrete Math. Appl.
\yr 2023
\vol 33
\issue 1
\pages 19--29
\crossref{https://doi.org/10.1515/dma-2023-0003}
Linking options:
  • https://www.mathnet.ru/eng/dm1678
  • https://doi.org/10.4213/dm1678
  • https://www.mathnet.ru/eng/dm/v33/i4/p47
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024