Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2022, Volume 34, Issue 1, Pages 3–19
DOI: https://doi.org/10.4213/dm1670
(Mi dm1670)
 

The site-perimeter of compositions

A. Blecher, Ch. Brennan, A. Knopfmacher

University of the Witwatersrand, Johannesburg
References:
Abstract: Compositions of $n$ are finite sequences of positive integers $(\sigma_i)_{i=1}^k$ such that \[\sigma_1+\sigma_2+\cdots +\sigma_k=n.\] We represent a composition of $n$ as a bargraph with area $n$ such that the height of the $i$-th column of the bargraph equals the size of the $i$-th part of the composition. We consider the site-perimeter which is the number of nearest-neighbour cells outside the boundary of the polyomino. The generating function that counts the total site-perimeter of compositions is obtained. In addition, we rederive the average site-perimeter of a composition by direct counting. Finally we determine the average site-perimeter of a bargraph with a given semi-perimeter.
Keywords: bargraphs, site-perimeter, compositions, generating functions, asymptotics.
Received: 01.09.2021
English version:
Discrete Mathematics and Applications, 2022, Volume 32, Issue 2, Pages 75–89
DOI: https://doi.org/10.1515/dma-2022-0007
Document Type: Article
UDC: 519.115
Language: Russian
Citation: A. Blecher, Ch. Brennan, A. Knopfmacher, “The site-perimeter of compositions”, Diskr. Mat., 34:1 (2022), 3–19; Discrete Math. Appl., 32:2 (2022), 75–89
Citation in format AMSBIB
\Bibitem{BleBreKno22}
\by A.~Blecher, Ch.~Brennan, A.~Knopfmacher
\paper The site-perimeter of compositions
\jour Diskr. Mat.
\yr 2022
\vol 34
\issue 1
\pages 3--19
\mathnet{http://mi.mathnet.ru/dm1670}
\crossref{https://doi.org/10.4213/dm1670}
\transl
\jour Discrete Math. Appl.
\yr 2022
\vol 32
\issue 2
\pages 75--89
\crossref{https://doi.org/10.1515/dma-2022-0007}
Linking options:
  • https://www.mathnet.ru/eng/dm1670
  • https://doi.org/10.4213/dm1670
  • https://www.mathnet.ru/eng/dm/v34/i1/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:283
    Full-text PDF :68
    References:79
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024