Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2022, Volume 34, Issue 1, Pages 64–75
DOI: https://doi.org/10.4213/dm1666
(Mi dm1666)
 

On the equality problem of finitely generated classes of exponentially-polynomial functions

S. S. Marchenkov

Lomonosov Moscow State University
References:
Abstract: We consider the class $\mathrm{EP}_{\mathbb N}$ of exponentially-polynomial functions which can be obtained by arbitrary superpositions of the constants 0, 1 and arithmetic operations of addition, multiplication, and powering. For this class, we solve the algorithmic equality problem of two functions that assume a finite number of values. Next, this class is restricted to the class $\mathrm{PEP}_{\mathbb N}$, in which the function $x^y$ is replaced by a sequence of functions $\{p_i^x\}$, where $p_0, p_1,\ldots$ are all prime numbers. For the class $\mathrm{PEP}_{\mathbb N}$, the problem of membership of a function to a finitely generated class is effectively reduced to the equality problem of two functions. In turn, the last problem is effectively solved for the set of all one-place $\mathrm{PEP}_{\mathbb N}$-functions.
Keywords: exponentially-polynomial functions, equality problem.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00200
Received: 15.04.2021
English version:
Discrete Mathematics and Applications, 2023, Volume 33, Issue 3, Pages 167–175
DOI: https://doi.org/10.1515/dma-2023-0015
Document Type: Article
UDC: 519.716
Language: Russian
Citation: S. S. Marchenkov, “On the equality problem of finitely generated classes of exponentially-polynomial functions”, Diskr. Mat., 34:1 (2022), 64–75; Discrete Math. Appl., 33:3 (2023), 167–175
Citation in format AMSBIB
\Bibitem{Mar22}
\by S.~S.~Marchenkov
\paper On the equality problem of finitely generated classes of exponentially-polynomial functions
\jour Diskr. Mat.
\yr 2022
\vol 34
\issue 1
\pages 64--75
\mathnet{http://mi.mathnet.ru/dm1666}
\crossref{https://doi.org/10.4213/dm1666}
\transl
\jour Discrete Math. Appl.
\yr 2023
\vol 33
\issue 3
\pages 167--175
\crossref{https://doi.org/10.1515/dma-2023-0015}
Linking options:
  • https://www.mathnet.ru/eng/dm1666
  • https://doi.org/10.4213/dm1666
  • https://www.mathnet.ru/eng/dm/v34/i1/p64
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:225
    Full-text PDF :48
    References:52
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024