Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2021, Volume 33, Issue 3, Pages 107–120
DOI: https://doi.org/10.4213/dm1658
(Mi dm1658)
 

This article is cited in 2 scientific papers (total in 2 papers)

Finding periods of Zhegalkin polynomials

S. N. Selezneva

Lomonosov Moscow State University
Full-text PDF (461 kB) Citations (2)
References:
Abstract: A period of a Boolean function $f(x_1, \ldots, x_n)$ is a binary $n$-tuple $a = (a_1, \ldots, a_n)$ that satisfies the identity $f(x_1+a_1, \ldots, x_n+a_n) = f(x_1, \ldots, x_n)$. A Boolean function is periodic if it admits a nonzero period. We propose an algorithm that takes the Zhegalkin polynomial of a Boolean function $f(x_1, \ldots, x_n)$ as the input and finds a basis of the space of all periods of $f(x_1, \ldots, x_n)$. The complexity of this algorithm is $n^{O(d)}$, where $d$ is the degree of the function $f$. As a corollary we show that a basis of the space of all periods of a Boolean function specified by the Zhegalkin polynomial of a bounded degree may be found with complexity which is polynomial in the number of variables.
Keywords: Boolean function, Zhegalkin polynomial, periodicity, linear structure, complexity.
Received: 17.06.2021
English version:
Discrete Mathematics and Applications, 2022, Volume 32, Issue 2, Pages 129–138
DOI: https://doi.org/10.1515/dma-2022-0012
Document Type: Article
UDC: 519.712.3
Language: Russian
Citation: S. N. Selezneva, “Finding periods of Zhegalkin polynomials”, Diskr. Mat., 33:3 (2021), 107–120; Discrete Math. Appl., 32:2 (2022), 129–138
Citation in format AMSBIB
\Bibitem{Sel21}
\by S.~N.~Selezneva
\paper Finding periods of Zhegalkin polynomials
\jour Diskr. Mat.
\yr 2021
\vol 33
\issue 3
\pages 107--120
\mathnet{http://mi.mathnet.ru/dm1658}
\crossref{https://doi.org/10.4213/dm1658}
\transl
\jour Discrete Math. Appl.
\yr 2022
\vol 32
\issue 2
\pages 129--138
\crossref{https://doi.org/10.1515/dma-2022-0012}
Linking options:
  • https://www.mathnet.ru/eng/dm1658
  • https://doi.org/10.4213/dm1658
  • https://www.mathnet.ru/eng/dm/v33/i3/p107
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024