Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2021, Volume 33, Issue 2, Pages 6–19
DOI: https://doi.org/10.4213/dm1642
(Mi dm1642)
 

This article is cited in 4 scientific papers (total in 4 papers)

On closed classes in partial $k$-valued logic that contain all polynomials

V. B. Alekseev

Lomonosov Moscow State University
Full-text PDF (474 kB) Citations (4)
References:
Abstract: Let $Pol_k$ be the set of all functions of $k$-valued logic representable by a polynomial modulo $k$, and let $Int(Pol_k)$ be the family of all closed classes (with respect to superposition) in the partial $k$-valued logic containing $Pol_k$ and consisting only of functions extendable to some function from $Pol_k$. Previously the author showed that if $k$ is the product of two different primes, then the family $Int(Pol_k)$ consists of 7 closed classes. In this paper, it is proved that if $k$ has at least 3 different prime divisors, then the family $Int(Pol_k)$ contains an infinitely decreasing (with respect to inclusion) chain of different closed classes.
Keywords: $k$-valued logic, partial $k$-valued logic, closed class, polynomial, predicate.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00200-а
Received: 22.04.2021
English version:
Discrete Mathematics and Applications, 2021, Volume 31, Issue 4, Pages 231–240
DOI: https://doi.org/10.1515/dma-2021-0020
Bibliographic databases:
Document Type: Article
UDC: 519.716
Language: Russian
Citation: V. B. Alekseev, “On closed classes in partial $k$-valued logic that contain all polynomials”, Diskr. Mat., 33:2 (2021), 6–19; Discrete Math. Appl., 31:4 (2021), 231–240
Citation in format AMSBIB
\Bibitem{Ale21}
\by V.~B.~Alekseev
\paper On closed classes in partial $k$-valued logic that contain all polynomials
\jour Diskr. Mat.
\yr 2021
\vol 33
\issue 2
\pages 6--19
\mathnet{http://mi.mathnet.ru/dm1642}
\crossref{https://doi.org/10.4213/dm1642}
\elib{https://elibrary.ru/item.asp?id=47018255}
\transl
\jour Discrete Math. Appl.
\yr 2021
\vol 31
\issue 4
\pages 231--240
\crossref{https://doi.org/10.1515/dma-2021-0020}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000691761800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85114349518}
Linking options:
  • https://www.mathnet.ru/eng/dm1642
  • https://doi.org/10.4213/dm1642
  • https://www.mathnet.ru/eng/dm/v33/i2/p6
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024