Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2021, Volume 33, Issue 1, Pages 31–46
DOI: https://doi.org/10.4213/dm1630
(Mi dm1630)
 

This article is cited in 1 scientific paper (total in 1 paper)

Estimates of lengths of shortest nonzero vectors in some lattices. I

A. S. Rybakov

TPA Laboratory, Moscow, Russia
Full-text PDF (483 kB) Citations (1)
References:
Abstract: In 1988, Friese et al. put forward lower estimates for the lengths of shortest nonzero vectors for “almost all” lattices of some families in the dimension 3. In 2004, the author of the present paper obtained a similar result for the dimension 4. Here we give a better estimate for the cardinality of the set of exceptional lattices for which the above estimates are not valid. In the case of dimension 4 we improve the upper estimate for an arbitrary chosen parameter that controls the accuracy of these lower estimates and for the number of exceptions. In this (first) part of the paper, we also prove some auxiliary results, which will be used in the second (main) part of the paper, in which an analogue of A. Friese et al. result will be given for dimension 5.
Keywords: lattice, nonzero shortest vectors, Minkowski successive minima.
Received: 28.07.2020
English version:
Discrete Mathematics and Applications, 2022, Volume 32, Issue 3, Pages 207–218
DOI: https://doi.org/10.1515/dma-2022-0018
Document Type: Article
UDC: 514.174.6+519.16
Language: Russian
Citation: A. S. Rybakov, “Estimates of lengths of shortest nonzero vectors in some lattices. I”, Diskr. Mat., 33:1 (2021), 31–46; Discrete Math. Appl., 32:3 (2022), 207–218
Citation in format AMSBIB
\Bibitem{Ryb21}
\by A.~S.~Rybakov
\paper Estimates of lengths of shortest nonzero vectors in some lattices. I
\jour Diskr. Mat.
\yr 2021
\vol 33
\issue 1
\pages 31--46
\mathnet{http://mi.mathnet.ru/dm1630}
\crossref{https://doi.org/10.4213/dm1630}
\transl
\jour Discrete Math. Appl.
\yr 2022
\vol 32
\issue 3
\pages 207--218
\crossref{https://doi.org/10.1515/dma-2022-0018}
Linking options:
  • https://www.mathnet.ru/eng/dm1630
  • https://doi.org/10.4213/dm1630
  • https://www.mathnet.ru/eng/dm/v33/i1/p31
    Cycle of papers
    This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:236
    Full-text PDF :66
    References:23
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024