Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2020, Volume 32, Issue 3, Pages 113–129
DOI: https://doi.org/10.4213/dm1615
(Mi dm1615)
 

This article is cited in 2 scientific papers (total in 2 papers)

Pseudo orthogonal Latin squares

S. Faruqia, S. Katreb, M. Gargc

a National Defence Academy Pune, Maharashtra, India
b S.P. Pune University Pune, Maharashtra, India
c Visiting Student, Bhaskaracharya Pratishthan Pune, Maharashtra, India
Full-text PDF (519 kB) Citations (2)
References:
Abstract: Two Latin squares $A,B$ of order $n$ are called pseudo orthogonal if for any $1\le i,j\le n$ there exists a $k,1\le k\le n$, such that $A(i,k)=B(j,k)$. We prove that the existence of a family of $m$ mutually pseudo orthogonal Latin squares of order $n$ is equivalent to the existence of a family of $m$ mutually orthogonal Latin squares of order $n$. We also obtain exact values of clique partition numbers of several classes of complete multipartite graphs and of the tensor product of complete graphs.
Keywords: Latin squares, clique partition number, intersection number.
Received: 16.04.2020
English version:
Discrete Mathematics and Applications, 2021, Volume 31, Issue 1, Pages 5–17
DOI: https://doi.org/10.1515/dma-2021-0002
Bibliographic databases:
Document Type: Article
UDC: 519.143
Language: Russian
Citation: S. Faruqi, S. Katre, M. Garg, “Pseudo orthogonal Latin squares”, Diskr. Mat., 32:3 (2020), 113–129; Discrete Math. Appl., 31:1 (2021), 5–17
Citation in format AMSBIB
\Bibitem{FarKatGar20}
\by S.~Faruqi, S.~Katre, M.~Garg
\paper Pseudo orthogonal Latin squares
\jour Diskr. Mat.
\yr 2020
\vol 32
\issue 3
\pages 113--129
\mathnet{http://mi.mathnet.ru/dm1615}
\crossref{https://doi.org/10.4213/dm1615}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4147022}
\transl
\jour Discrete Math. Appl.
\yr 2021
\vol 31
\issue 1
\pages 5--17
\crossref{https://doi.org/10.1515/dma-2021-0002}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000621785400002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85101538662}
Linking options:
  • https://www.mathnet.ru/eng/dm1615
  • https://doi.org/10.4213/dm1615
  • https://www.mathnet.ru/eng/dm/v32/i3/p113
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024