Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2020, Volume 32, Issue 3, Pages 85–97
DOI: https://doi.org/10.4213/dm1608
(Mi dm1608)
 

This article is cited in 2 scientific papers (total in 2 papers)

Multiaffine polynomials over a finite field

S. N. Selezneva

Lomonosov Moscow State University
Full-text PDF (441 kB) Citations (2)
References:
Abstract: We consider polynomials $f(x_1, \ldots, x_n)$ over a finite field that possess the following property: for some element $b$ of the field the set of solutions of the equation $f(x_1, \ldots, x_n) = b$ coincides with the set of solutions of some system of linear equations over this field. Such polynomials are said to be multiaffine with respect to the right-hand side $b$. We obtain the properties of multiaffine polynomials over a finite field. Then we show that checking the multiaffinity with respect to a given right-hand side may be done by an algorithm with polynomial (in terms of the number of variables and summands of the input polynomial) complexity. Besides that, we prove that in case of the positive decision a corresponding system of linear equations may be recovered with complexity which is also polynomial in terms of the same parameters.
Keywords: finite field, polynomial, multiaffinity, system of linear equations over a finite field, algorithm, complexity, polynomial algorithm.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00200-а
Received: 14.01.2020
Revised: 24.07.2020
English version:
Discrete Mathematics and Applications, 2021, Volume 31, Issue 6, Pages 421–430
DOI: https://doi.org/10.1515/dma-2021-0038
Bibliographic databases:
Document Type: Article
UDC: 519.7+519.712.3+512.624.3
Language: Russian
Citation: S. N. Selezneva, “Multiaffine polynomials over a finite field”, Diskr. Mat., 32:3 (2020), 85–97; Discrete Math. Appl., 31:6 (2021), 421–430
Citation in format AMSBIB
\Bibitem{Sel20}
\by S.~N.~Selezneva
\paper Multiaffine polynomials over a finite field
\jour Diskr. Mat.
\yr 2020
\vol 32
\issue 3
\pages 85--97
\mathnet{http://mi.mathnet.ru/dm1608}
\crossref{https://doi.org/10.4213/dm1608}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2084574}
\elib{https://elibrary.ru/item.asp?id=47547938}
\transl
\jour Discrete Math. Appl.
\yr 2021
\vol 31
\issue 6
\pages 421--430
\crossref{https://doi.org/10.1515/dma-2021-0038}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000730399800006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85121844572}
Linking options:
  • https://www.mathnet.ru/eng/dm1608
  • https://doi.org/10.4213/dm1608
  • https://www.mathnet.ru/eng/dm/v32/i3/p85
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024