Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2020, Volume 32, Issue 3, Pages 49–67
DOI: https://doi.org/10.4213/dm1607
(Mi dm1607)
 

This article is cited in 2 scientific papers (total in 2 papers)

Bounds on Shannon functions of lengths of contact closure tests for contact circuits

K. A. Popkov

Keldysh Institute of Applied Mathematics
Full-text PDF (583 kB) Citations (2)
References:
Abstract: We consider the problem of synthesis of irredundant two-pole contact circuits which implement $n$-place Boolean functions and allow short single fault detection or diagnostic tests of closures of at most $k$ contacts. We prove that the Shannon function of the length of a fault detection test is equal to $n$ for any $n$ and $k$, and that the Shannon function of the length of a diagnostic test is majorized by $n+k(n-2)$ for $n\geqslant 2$.
Keywords: contact circuit, contact closure, Boolean function, fault detection test, diagnostic test, Shannon function.
Received: 27.12.2019
English version:
Discrete Mathematics and Applications, 2021, Volume 31, Issue 3, Pages 165–178
DOI: https://doi.org/10.1515/dma-2021-0015
Bibliographic databases:
Document Type: Article
UDC: 519.718.7
Language: Russian
Citation: K. A. Popkov, “Bounds on Shannon functions of lengths of contact closure tests for contact circuits”, Diskr. Mat., 32:3 (2020), 49–67; Discrete Math. Appl., 31:3 (2021), 165–178
Citation in format AMSBIB
\Bibitem{Pop20}
\by K.~A.~Popkov
\paper Bounds on Shannon functions of lengths of contact closure tests for contact circuits
\jour Diskr. Mat.
\yr 2020
\vol 32
\issue 3
\pages 49--67
\mathnet{http://mi.mathnet.ru/dm1607}
\crossref{https://doi.org/10.4213/dm1607}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4161734}
\elib{https://elibrary.ru/item.asp?id=46874654}
\transl
\jour Discrete Math. Appl.
\yr 2021
\vol 31
\issue 3
\pages 165--178
\crossref{https://doi.org/10.1515/dma-2021-0015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000684255700002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85109211456}
Linking options:
  • https://www.mathnet.ru/eng/dm1607
  • https://doi.org/10.4213/dm1607
  • https://www.mathnet.ru/eng/dm/v32/i3/p49
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:228
    Full-text PDF :74
    References:33
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024