Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2020, Volume 32, Issue 3, Pages 68–75
DOI: https://doi.org/10.4213/dm1601
(Mi dm1601)
 

This article is cited in 2 scientific papers (total in 2 papers)

Minimal contact circuits for characteristic functions of spheres

N. P. Red'kin

Lomonosov Moscow State University
Full-text PDF (425 kB) Citations (2)
References:
Abstract: We study the complexity of implementation of the characteristic functions of spheres by contact circuits. By the characteristic functions of the sphere with center at a vertex $\tilde\sigma=(\sigma_1,\ldots,\sigma_n)$, $\sigma_1,\ldots,\sigma_n\in\{0,1\}$, we mean the Boolean function $\varphi^{(n)}_{\tilde\sigma}(x_1,\ldots,x_n)$ which is equal to 1 on those and only those tuples of values that differ from the tuple $\tilde\sigma$ only in one digit. It is shown that the number $3n-2$ of contacts is necessary and sufficient for implementation of $\varphi^{(n)}_{\tilde\sigma}(\tilde x)$ by a contact circuit.
Keywords: Boolean function, contact circuit, minimal circuit.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00337
Received: 28.11.2019
English version:
Discrete Mathematics and Applications, 2021, Volume 31, Issue 6, Pages 403–408
DOI: https://doi.org/10.1515/dma-2021-0036
Bibliographic databases:
Document Type: Article
UDC: 519.714.7
Language: Russian
Citation: N. P. Red'kin, “Minimal contact circuits for characteristic functions of spheres”, Diskr. Mat., 32:3 (2020), 68–75; Discrete Math. Appl., 31:6 (2021), 403–408
Citation in format AMSBIB
\Bibitem{Red20}
\by N.~P.~Red'kin
\paper Minimal contact circuits for characteristic functions of spheres
\jour Diskr. Mat.
\yr 2020
\vol 32
\issue 3
\pages 68--75
\mathnet{http://mi.mathnet.ru/dm1601}
\crossref{https://doi.org/10.4213/dm1601}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4147018}
\elib{https://elibrary.ru/item.asp?id=47549813}
\transl
\jour Discrete Math. Appl.
\yr 2021
\vol 31
\issue 6
\pages 403--408
\crossref{https://doi.org/10.1515/dma-2021-0036}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000730399800004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85121825614}
Linking options:
  • https://www.mathnet.ru/eng/dm1601
  • https://doi.org/10.4213/dm1601
  • https://www.mathnet.ru/eng/dm/v32/i3/p68
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024