Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2020, Volume 32, Issue 1, Pages 135–156
DOI: https://doi.org/10.4213/dm1599
(Mi dm1599)
 

This article is cited in 8 scientific papers (total in 8 papers)

Large deviations of branching process in a random environment. II

A. V. Shklyaev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Full-text PDF (553 kB) Citations (8)
References:
Abstract: We consider the probabilities of large deviations for the branching process $ Z_n $ in a random environment, which is formed by independent identically distributed variables. It is assumed that the associated random walk $ S_n = \xi_1 + \ldots + \xi_n $ has a finite mean $ \mu $ and satisfies the Cramér condition $ E e^{h \xi_i} <\infty $, $ 0 <h <h^+$. Under additional moment constraints on $ Z_1 $, the exact asymptotic of the probabilities $ {\mathbf P} (\ln Z_n \in [x, x + \Delta_n)) $ is found for the values $ x/n $ varying in the range depending on the type of process, and for all sequences $ \Delta_n $ that tend to zero sufficiently slowly as $ n \to \infty $. A similar theorem is proved for a random process in a random environment with immigration.
Keywords: branching processes in random environment, large deviation probabilities, branching processes with immigration.
Funding agency Grant number
Russian Science Foundation 19-11-00111
Received: 10.10.2019
English version:
Discrete Mathematics and Applications, 2021, Volume 31, Issue 6, Pages 431–447
DOI: https://doi.org/10.1515/dma-2021-0039
Bibliographic databases:
Document Type: Article
UDC: 519.218.27
Language: Russian
Citation: A. V. Shklyaev, “Large deviations of branching process in a random environment. II”, Diskr. Mat., 32:1 (2020), 135–156; Discrete Math. Appl., 31:6 (2021), 431–447
Citation in format AMSBIB
\Bibitem{Shk20}
\by A.~V.~Shklyaev
\paper Large deviations of branching process in a random environment. II
\jour Diskr. Mat.
\yr 2020
\vol 32
\issue 1
\pages 135--156
\mathnet{http://mi.mathnet.ru/dm1599}
\crossref{https://doi.org/10.4213/dm1599}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4123504}
\elib{https://elibrary.ru/item.asp?id=47550445}
\transl
\jour Discrete Math. Appl.
\yr 2021
\vol 31
\issue 6
\pages 431--447
\crossref{https://doi.org/10.1515/dma-2021-0039}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000730399800007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85121778266}
Linking options:
  • https://www.mathnet.ru/eng/dm1599
  • https://doi.org/10.4213/dm1599
  • https://www.mathnet.ru/eng/dm/v32/i1/p135
    Cycle of papers
    This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:487
    Full-text PDF :92
    References:39
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024