Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2020, Volume 32, Issue 3, Pages 76–84
DOI: https://doi.org/10.4213/dm1598
(Mi dm1598)
 

A family of asymptotically independent statistics in polynomial scheme containing the Pearson statistic

M. P. Savelov

Novosibirsk State University
References:
Abstract: We consider a polynomial scheme with $N$ outcomes. The Pearson statistic is the classical one for testing the hypothesis that the probabilities of outcomes are given by the numbers $p_1,\ldots,p_N$. We suggest a couple of $N-2$ statistics which along with the Pearson statistics constitute a set of $N-1$ asymptotically jointly independent random variables, and find their limit distributions. The Pearson statistics is the square of the length of asymptotically normal random vector. The suggested statistics are coordinates of this vector in some auxiliary spherical coordinate system.
Keywords: Chi-square test, Pearson statistics, limit distributions, angular statistics.
Funding agency Grant number
Russian Science Foundation 17-11-01173
Received: 19.11.2019
English version:
Discrete Mathematics and Applications, 2022, Volume 32, Issue 1, Pages 39–45
DOI: https://doi.org/10.1515/dma-2022-0003
Bibliographic databases:
Document Type: Article
UDC: 513.213
Language: Russian
Citation: M. P. Savelov, “A family of asymptotically independent statistics in polynomial scheme containing the Pearson statistic”, Diskr. Mat., 32:3 (2020), 76–84; Discrete Math. Appl., 32:1 (2022), 39–45
Citation in format AMSBIB
\Bibitem{Sav20}
\by M.~P.~Savelov
\paper A family of asymptotically independent statistics in polynomial scheme containing the Pearson statistic
\jour Diskr. Mat.
\yr 2020
\vol 32
\issue 3
\pages 76--84
\mathnet{http://mi.mathnet.ru/dm1598}
\crossref{https://doi.org/10.4213/dm1598}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4147019}
\transl
\jour Discrete Math. Appl.
\yr 2022
\vol 32
\issue 1
\pages 39--45
\crossref{https://doi.org/10.1515/dma-2022-0003}
Linking options:
  • https://www.mathnet.ru/eng/dm1598
  • https://doi.org/10.4213/dm1598
  • https://www.mathnet.ru/eng/dm/v32/i3/p76
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024