Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2019, Volume 31, Issue 4, Pages 102–115
DOI: https://doi.org/10.4213/dm1575
(Mi dm1575)
 

This article is cited in 6 scientific papers (total in 6 papers)

Large deviations of branching process in a random environment

A. V. Shklyaev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Full-text PDF (490 kB) Citations (6)
References:
Abstract: In this first part of the paper we find the asymptotic formulas for the probabilities of large deviations of the sequence defined by the random difference equation $Y_{n+1}=A_{n} Y_n + B_n$, where $A_1,A_2,\ldots$ are independent identically distributed random variables and $B_n$ may depend on $\{(A_k,B_k),0\leqslant k<n\}$ for any $n\geqslant1$. In the second part of the paper this results are applied to the large deviations of branching processes in a random environment.
Keywords: random difference equations, probabilities of large deviations, branching processes in a random environment } \classification[Funding]{The study was supported by the Russian Science Foundation (project 19-11-00111) in the Steklov Mathematical Institute of Russian Academy of Sciences.
Funding agency Grant number
Russian Science Foundation 19-11-00111
This work was supported by the Russian Science Foundation (project 19-11-00111).
Received: 16.05.2019
Revised: 10.10.2019
English version:
Discrete Mathematics and Applications, 2021, Volume 31, Issue 4, Pages 281–291
DOI: https://doi.org/10.1515/dma-2021-0025
Bibliographic databases:
Document Type: Article
UDC: 519.218.2
Language: Russian
Citation: A. V. Shklyaev, “Large deviations of branching process in a random environment”, Diskr. Mat., 31:4 (2019), 102–115; Discrete Math. Appl., 31:4 (2021), 281–291
Citation in format AMSBIB
\Bibitem{Shk19}
\by A.~V.~Shklyaev
\paper Large deviations of branching process in~a~random environment
\jour Diskr. Mat.
\yr 2019
\vol 31
\issue 4
\pages 102--115
\mathnet{http://mi.mathnet.ru/dm1575}
\crossref{https://doi.org/10.4213/dm1575}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4043286}
\elib{https://elibrary.ru/item.asp?id=46986606}
\transl
\jour Discrete Math. Appl.
\yr 2021
\vol 31
\issue 4
\pages 281--291
\crossref{https://doi.org/10.1515/dma-2021-0025}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000691761800006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85114381112}
Linking options:
  • https://www.mathnet.ru/eng/dm1575
  • https://doi.org/10.4213/dm1575
  • https://www.mathnet.ru/eng/dm/v31/i4/p102
    Cycle of papers
    This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024