Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2020, Volume 32, Issue 1, Pages 60–73
DOI: https://doi.org/10.4213/dm1574
(Mi dm1574)
 

On the action of the implicative closure operator on the set of partial functions of the multivalued logic

S. S. Marchenkov

Lomonosov Moscow State University
References:
Abstract: On the set $P_k^*$ of partial functions of the $k$-valued logic, we consider the implicative closure operator, which is the extension of the parametric closure operator via the logical implication. It is proved that, for any $k\geqslant 2$, the number of implicative closed classes in $P_k^*$ is finite. For any $k\geqslant 2$, in $P_k^*$ two series of implicative closed classes are defined. We show that these two series exhaust all implicative precomplete classes. We also identify all 8 atoms of the lattice of implicative closed classes in $P_3^*$.
Keywords: implicative closure operator, partial functions of multivalued logic.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00200
Received: 07.05.2019
English version:
Discrete Mathematics and Applications, 2021, Volume 31, Issue 3, Pages 155–164
DOI: https://doi.org/10.1515/dma-2021-0014
Bibliographic databases:
Document Type: Article
UDC: 519.716
Language: Russian
Citation: S. S. Marchenkov, “On the action of the implicative closure operator on the set of partial functions of the multivalued logic”, Diskr. Mat., 32:1 (2020), 60–73; Discrete Math. Appl., 31:3 (2021), 155–164
Citation in format AMSBIB
\Bibitem{Mar20}
\by S.~S.~Marchenkov
\paper On the action of the implicative closure operator on the set of partial functions of the multivalued logic
\jour Diskr. Mat.
\yr 2020
\vol 32
\issue 1
\pages 60--73
\mathnet{http://mi.mathnet.ru/dm1574}
\crossref{https://doi.org/10.4213/dm1574}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4075902}
\elib{https://elibrary.ru/item.asp?id=46867844}
\transl
\jour Discrete Math. Appl.
\yr 2021
\vol 31
\issue 3
\pages 155--164
\crossref{https://doi.org/10.1515/dma-2021-0014}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000684255700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85109218039}
Linking options:
  • https://www.mathnet.ru/eng/dm1574
  • https://doi.org/10.4213/dm1574
  • https://www.mathnet.ru/eng/dm/v32/i1/p60
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024