Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2019, Volume 31, Issue 2, Pages 77–83
DOI: https://doi.org/10.4213/dm1570
(Mi dm1570)
 

Compositions of a numerical semigroup

Ze Gu

Zhaoqing University, School of Mathematics and Statistics
References:
Abstract: Given a numerical semigroup $S$, a nonnegative integer $a$ and $m\in S\backslash\{0\}$, we introduce the set $C(S,a,m)=\{s+aw(s~mod~m)~|~s\in S\}$, where $\{w(0), w(1), \cdots, w(m-1)\}$ is the Apéry set of $m$ in $S$. In this paper we characterize the pairs $(a,m)$ such that $C(S,a,m)$ is a numerical semigroup. We study the principal invariants of $C(S,a,m)$ which are given explicitly in terms of invariants of $S$. We also characterize the compositions $C(S,a,m)$ that are symmetric, pseudo-symmetric and almost symmetric. Finally, a result about compliance to Wilf's conjecture of $C(S,a,m)$ is given.
Keywords: numerical semigroups, compositions, Apéry sets, Frobenius number, Wilf's conjecture.
Funding agency Grant number
National Natural Science Foundation of China 11701504
11801081
Natural Science Foundation of Guangdong Province 2016KQNCX180
Received: 18.12.2018
English version:
Discrete Mathematics and Applications, 2019, Volume 29, Issue 5, Pages 345–350
DOI: https://doi.org/10.1515/dma-2019-0032
Bibliographic databases:
Document Type: Article
UDC: 512.533.8
Language: Russian
Citation: Ze Gu, “Compositions of a numerical semigroup”, Diskr. Mat., 31:2 (2019), 77–83; Discrete Math. Appl., 29:5 (2019), 345–350
Citation in format AMSBIB
\Bibitem{Gu19}
\by Ze~Gu
\paper Compositions of a numerical semigroup
\jour Diskr. Mat.
\yr 2019
\vol 31
\issue 2
\pages 77--83
\mathnet{http://mi.mathnet.ru/dm1570}
\crossref{https://doi.org/10.4213/dm1570}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3962502}
\elib{https://elibrary.ru/item.asp?id=37652130}
\transl
\jour Discrete Math. Appl.
\yr 2019
\vol 29
\issue 5
\pages 345--350
\crossref{https://doi.org/10.1515/dma-2019-0032}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000491422800008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85074542283}
Linking options:
  • https://www.mathnet.ru/eng/dm1570
  • https://doi.org/10.4213/dm1570
  • https://www.mathnet.ru/eng/dm/v31/i2/p77
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:317
    Full-text PDF :33
    References:50
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024