Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2019, Volume 31, Issue 4, Pages 70–87
DOI: https://doi.org/10.4213/dm1562
(Mi dm1562)
 

Local limit theorems for generalized scheme of allocation of particles into ordered cells

A. N. Timashev

Institute of Cryptography, Communications and Informatics
References:
Abstract: A generalized scheme of allocation of $n$ particles into ordered cells (components). Some statements containing sufficient conditions for the weak convergence of the number of components with given cardinality and of the total number of components to the negative binomial distribution as $n\to\infty$ are presented as hypotheses. Examples supporting the validity of these statements in particular cases are considered. For some examples we prove local limit theorems for the total number of components which partially generalize known results on the convergence of this distribution to the normal law.
Keywords: local limit theorems, generalized allocation scheme, particles, ordered cells, saddle-point technique.
Received: 10.01.2019
Revised: 17.09.2019
English version:
Discrete Mathematics and Applications, 2021, Volume 31, Issue 4, Pages 293–307
DOI: https://doi.org/10.1515/dma-2021-0026
Bibliographic databases:
Document Type: Article
UDC: 519.212.2+519.214
Language: Russian
Citation: A. N. Timashev, “Local limit theorems for generalized scheme of allocation of particles into ordered cells”, Diskr. Mat., 31:4 (2019), 70–87; Discrete Math. Appl., 31:4 (2021), 293–307
Citation in format AMSBIB
\Bibitem{Tim19}
\by A.~N.~Timashev
\paper Local limit theorems for generalized scheme of allocation of particles into ordered cells
\jour Diskr. Mat.
\yr 2019
\vol 31
\issue 4
\pages 70--87
\mathnet{http://mi.mathnet.ru/dm1562}
\crossref{https://doi.org/10.4213/dm1562}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3781286}
\transl
\jour Discrete Math. Appl.
\yr 2021
\vol 31
\issue 4
\pages 293--307
\crossref{https://doi.org/10.1515/dma-2021-0026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000691761800007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85114373838}
Linking options:
  • https://www.mathnet.ru/eng/dm1562
  • https://doi.org/10.4213/dm1562
  • https://www.mathnet.ru/eng/dm/v31/i4/p70
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:258
    Full-text PDF :29
    References:30
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024