|
On the complexity of monotone circuits for threshold symmetric Boolean functions
I. S. Sergeev Research Institute "Kvant", Moscow
Abstract:
The complexity of implementation of a threshold symmetric $n$-place Boolean function with threshold $k = O(1)$ via circuits over the basis $\{\vee,\, \wedge\}$ is shown not to exceed $2 \log_2 k \cdot n + o(n)$. Moreover, the complexity of a threshold-2 function is proved to be $2n+\Theta(\sqrt n)$, and the complexity of a threshold-3 function is shown to be $3n+O(\log n) $, the corresponding lower bounds are put forward.
Keywords:
monotone circuits, complexity, symmetric Boolean functions, threshold functions.
Received: 25.10.2018 Revised: 16.12.2019
Citation:
I. S. Sergeev, “On the complexity of monotone circuits for threshold symmetric Boolean functions”, Diskr. Mat., 32:1 (2020), 81–109; Discrete Math. Appl., 31:5 (2021), 345–366
Linking options:
https://www.mathnet.ru/eng/dm1547https://doi.org/10.4213/dm1547 https://www.mathnet.ru/eng/dm/v32/i1/p81
|
|