Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2020, Volume 32, Issue 1, Pages 81–109
DOI: https://doi.org/10.4213/dm1547
(Mi dm1547)
 

On the complexity of monotone circuits for threshold symmetric Boolean functions

I. S. Sergeev

Research Institute "Kvant", Moscow
References:
Abstract: The complexity of implementation of a threshold symmetric $n$-place Boolean function with threshold $k = O(1)$ via circuits over the basis $\{\vee,\, \wedge\}$ is shown not to exceed $2 \log_2 k \cdot n + o(n)$. Moreover, the complexity of a threshold-2 function is proved to be $2n+\Theta(\sqrt n)$, and the complexity of a threshold-3 function is shown to be $3n+O(\log n) $, the corresponding lower bounds are put forward.
Keywords: monotone circuits, complexity, symmetric Boolean functions, threshold functions.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00294а
Received: 25.10.2018
Revised: 16.12.2019
English version:
Discrete Mathematics and Applications, 2021, Volume 31, Issue 5, Pages 345–366
DOI: https://doi.org/10.1515/dma-2021-0031
Bibliographic databases:
Document Type: Article
UDC: 519.714.4
Language: Russian
Citation: I. S. Sergeev, “On the complexity of monotone circuits for threshold symmetric Boolean functions”, Diskr. Mat., 32:1 (2020), 81–109; Discrete Math. Appl., 31:5 (2021), 345–366
Citation in format AMSBIB
\Bibitem{Ser20}
\by I.~S.~Sergeev
\paper On the complexity of monotone circuits for threshold symmetric Boolean functions
\jour Diskr. Mat.
\yr 2020
\vol 32
\issue 1
\pages 81--109
\mathnet{http://mi.mathnet.ru/dm1547}
\crossref{https://doi.org/10.4213/dm1547}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4075904}
\elib{https://elibrary.ru/item.asp?id=47518627}
\transl
\jour Discrete Math. Appl.
\yr 2021
\vol 31
\issue 5
\pages 345--366
\crossref{https://doi.org/10.1515/dma-2021-0031}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000708435200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85117703416}
Linking options:
  • https://www.mathnet.ru/eng/dm1547
  • https://doi.org/10.4213/dm1547
  • https://www.mathnet.ru/eng/dm/v32/i1/p81
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024