Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2019, Volume 31, Issue 1, Pages 56–71
DOI: https://doi.org/10.4213/dm1541
(Mi dm1541)
 

This article is cited in 1 scientific paper (total in 1 paper)

On stabilization of an automaton model of migration processes

D. I. Vasilyev, È. È. Gasanov, V. B. Kudryavtsev

Lomonosov Moscow State University
Full-text PDF (470 kB) Citations (1)
References:
Abstract: A dynamic system of cities with migrants is considered. The wage function is each city depends on the number of migrants in the city. The system is modeled by an automaton whose state is the vector consisting of the numbers of migrants in the cities. The transition function of the automaton reflects the conditions for transfers of migrants between cities. The system stabilizes if the moves are stopped at some point. We find conditions for stabilization of such system depending on the restrictions on the wage function and the automaton transition function. It is shown that if the functions of wages are strictly decreasing, if their ranges are disjoint, and if the transition function is defined so that a migrant moves to another city if and only if its salary increases, then the system necessarily stabilizes and its final state depends only on the total number of migrants and does not depend on their initial distribution over the cities. However, if the transition function is changed so that a migrant moves also if its salary is preserved, but the total wages in all cities are increased, then a monotonous decrease in the wage functions is sufficient for stabilization of the system.
Keywords: automaton modelling of migration processes, stabilization of dynamic systems.
Received: 29.09.2018
Revised: 03.11.2018
English version:
Discrete Mathematics and Applications, 2020, Volume 30, Issue 2, Pages 117–128
DOI: https://doi.org/10.1515/dma-2020-0011
Bibliographic databases:
Document Type: Article
UDC: 519.713.6+519.218.84
Language: Russian
Citation: D. I. Vasilyev, È. È. Gasanov, V. B. Kudryavtsev, “On stabilization of an automaton model of migration processes”, Diskr. Mat., 31:1 (2019), 56–71; Discrete Math. Appl., 30:2 (2020), 117–128
Citation in format AMSBIB
\Bibitem{VasGasKud19}
\by D.~I.~Vasilyev, \`E.~\`E.~Gasanov, V.~B.~Kudryavtsev
\paper On stabilization of an automaton model of migration processes
\jour Diskr. Mat.
\yr 2019
\vol 31
\issue 1
\pages 56--71
\mathnet{http://mi.mathnet.ru/dm1541}
\crossref{https://doi.org/10.4213/dm1541}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3920655}
\elib{https://elibrary.ru/item.asp?id=37045014}
\transl
\jour Discrete Math. Appl.
\yr 2020
\vol 30
\issue 2
\pages 117--128
\crossref{https://doi.org/10.1515/dma-2020-0011}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000531071500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85085841290}
Linking options:
  • https://www.mathnet.ru/eng/dm1541
  • https://doi.org/10.4213/dm1541
  • https://www.mathnet.ru/eng/dm/v31/i1/p56
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024