Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2018, Volume 30, Issue 2, Pages 27–36
DOI: https://doi.org/10.4213/dm1521
(Mi dm1521)
 

This article is cited in 4 scientific papers (total in 4 papers)

Estimates of the mean size of the subset image under composition of random mappings

A. M. Zubkov, A. A. Serov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Full-text PDF (484 kB) Citations (4)
References:
Abstract: Let $\mathcal{X}_N$ be a set of $N$ elements and $F_1,F_2,\ldots$ be a sequence of random independent equiprobable mappings $\mathcal{X}_N\to\mathcal{X}_N$. For a subset $S_0\subset\mathcal{X}_N$, $|S_0|=m$, we consider a sequence of its images $S_t=F_t(\ldots F_2(F_1(S_0))\ldots)$, $t=1,2\ldots$ An approach to the exact recurrent computation of distribution of $|S_t|$ is described. Two-sided inequalities for $\mathbf{M}\{|S_t|\,|\,|S_0|=m\}$ such that the difference between the upper and lower bounds is $o(m)$ for $m,t,N\to\infty,\,mt=o(N)$ are derived. The results are of interest for the analysis of time-memory tradeoff algorithms.
Keywords: compositions of random mappings, time-memory tradeoff method.
Funding agency Grant number
Russian Science Foundation 14-50-00005
Received: 28.03.2018
English version:
Discrete Mathematics and Applications, 2018, Volume 28, Issue 5, Pages 331–338
DOI: https://doi.org/10.1515/dma-2018-0029
Bibliographic databases:
Document Type: Article
UDC: 519.212.2
Language: Russian
Citation: A. M. Zubkov, A. A. Serov, “Estimates of the mean size of the subset image under composition of random mappings”, Diskr. Mat., 30:2 (2018), 27–36; Discrete Math. Appl., 28:5 (2018), 331–338
Citation in format AMSBIB
\Bibitem{ZubSer18}
\by A.~M.~Zubkov, A.~A.~Serov
\paper Estimates of the mean size of the subset image under composition of random mappings
\jour Diskr. Mat.
\yr 2018
\vol 30
\issue 2
\pages 27--36
\mathnet{http://mi.mathnet.ru/dm1521}
\crossref{https://doi.org/10.4213/dm1521}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3808075}
\elib{https://elibrary.ru/item.asp?id=34940587}
\transl
\jour Discrete Math. Appl.
\yr 2018
\vol 28
\issue 5
\pages 331--338
\crossref{https://doi.org/10.1515/dma-2018-0029}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000448699100006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85056217416}
Linking options:
  • https://www.mathnet.ru/eng/dm1521
  • https://doi.org/10.4213/dm1521
  • https://www.mathnet.ru/eng/dm/v30/i2/p27
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:576
    Full-text PDF :70
    References:59
    First page:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024