Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2018, Volume 30, Issue 3, Pages 77–87
DOI: https://doi.org/10.4213/dm1495
(Mi dm1495)
 

This article is cited in 1 scientific paper (total in 1 paper)

On affine classification of permutations on the space $GF(2)^3$

F. M. Malyshev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Full-text PDF (534 kB) Citations (1)
References:
Abstract: We give an elementary proof that by multiplication on left and right by affine permutations $A,B\in AGL(3,2)$ each permutation $\pi:GF(2)^3\rightarrow GF(2)^3$ may be reduced to one of the 4 permutations for which the $3\times3$-matrices consisting of the coefficients of quadratic terms of coordinate functions have as an invariant the rank, which is either 3, or 2, or 1, or 0, respectively. For comparison, we evaluate the number of classes of affine equivalence by the Pólya enumerative theory.
Keywords: permutation, affine transformation, Pólya theory, de Brouijn's theorem.
Received: 09.01.2018
English version:
Discrete Mathematics and Applications, 2019, Volume 29, Issue 6, Pages 363–371
DOI: https://doi.org/10.1515/dma-2019-0035
Bibliographic databases:
Document Type: Article
UDC: 512.542.74
Language: Russian
Citation: F. M. Malyshev, “On affine classification of permutations on the space $GF(2)^3$”, Diskr. Mat., 30:3 (2018), 77–87; Discrete Math. Appl., 29:6 (2019), 363–371
Citation in format AMSBIB
\Bibitem{Mal18}
\by F.~M.~Malyshev
\paper On affine classification of permutations on the space $GF(2)^3$
\jour Diskr. Mat.
\yr 2018
\vol 30
\issue 3
\pages 77--87
\mathnet{http://mi.mathnet.ru/dm1495}
\crossref{https://doi.org/10.4213/dm1495}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3849370}
\elib{https://elibrary.ru/item.asp?id=35410171}
\transl
\jour Discrete Math. Appl.
\yr 2019
\vol 29
\issue 6
\pages 363--371
\crossref{https://doi.org/10.1515/dma-2019-0035}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000504837800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85078566173}
Linking options:
  • https://www.mathnet.ru/eng/dm1495
  • https://doi.org/10.4213/dm1495
  • https://www.mathnet.ru/eng/dm/v30/i3/p77
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:337
    Full-text PDF :68
    References:36
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024